Change --amp flags, no more --apex-amp and --native-amp, add --amp-impl to select apex, and --amp-dtype to allow bfloat16 AMP dtype

pull/1479/head
Ross Wightman 2 years ago
parent b1b024dfed
commit 285771972e

@ -315,10 +315,10 @@ group.add_argument('--save-images', action='store_true', default=False,
help='save images of input bathes every log interval for debugging')
group.add_argument('--amp', action='store_true', default=False,
help='use NVIDIA Apex AMP or Native AMP for mixed precision training')
group.add_argument('--apex-amp', action='store_true', default=False,
help='Use NVIDIA Apex AMP mixed precision')
group.add_argument('--native-amp', action='store_true', default=False,
help='Use Native Torch AMP mixed precision')
group.add_argument('--amp-dtype', default='float16', type=str,
help='lower precision AMP dtype (default: float16)')
group.add_argument('--amp-impl', default='native', type=str,
help='AMP impl to use, "native" or "apex" (default: native)')
group.add_argument('--no-ddp-bb', action='store_true', default=False,
help='Force broadcast buffers for native DDP to off.')
group.add_argument('--pin-mem', action='store_true', default=False,
@ -385,19 +385,18 @@ def main():
# resolve AMP arguments based on PyTorch / Apex availability
use_amp = None
amp_dtype = torch.float16
if args.amp:
# `--amp` chooses native amp before apex (APEX ver not actively maintained)
if has_native_amp:
args.native_amp = True
elif has_apex:
args.apex_amp = True
if args.apex_amp and has_apex:
if args.amp_impl == 'apex':
assert has_apex, 'AMP impl specified as APEX but APEX is not installed.'
use_amp = 'apex'
elif args.native_amp and has_native_amp:
assert args.amp_dtype == 'float16'
else:
assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).'
use_amp = 'native'
elif args.apex_amp or args.native_amp:
_logger.warning("Neither APEX or native Torch AMP is available, using float32. "
"Install NVIDA apex or upgrade to PyTorch 1.6")
assert args.amp_dtype in ('float16', 'bfloat16')
if args.amp_dtype == 'bfloat16':
amp_dtype = torch.bfloat16
utils.random_seed(args.seed, args.rank)
@ -484,7 +483,7 @@ def main():
batch_ratio = global_batch_size / args.lr_base_size
if not args.lr_base_scale:
on = args.opt.lower()
args.base_scale = 'sqrt' if any([o in on for o in ('ada', 'lamb')]) else 'linear'
args.lr_base_scale = 'sqrt' if any([o in on for o in ('ada', 'lamb')]) else 'linear'
if args.lr_base_scale == 'sqrt':
batch_ratio = batch_ratio ** 0.5
args.lr = args.lr_base * batch_ratio
@ -505,7 +504,7 @@ def main():
if utils.is_primary(args):
_logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
elif use_amp == 'native':
amp_autocast = partial(torch.autocast, device_type=device.type)
amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype)
if device.type == 'cuda':
loss_scaler = NativeScaler()
if utils.is_primary(args):

Loading…
Cancel
Save