Merge branch 'master' into attn_update

pull/821/head
Ross Wightman 3 years ago
commit 24720abe3b

@ -17,7 +17,7 @@ if hasattr(torch._C, '_jit_set_profiling_executor'):
# transformer models don't support many of the spatial / feature based model functionalities
NON_STD_FILTERS = [
'vit_*', 'tnt_*', 'pit_*', 'swin_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*',
'convit_*', 'levit*', 'visformer*', 'deit*', 'jx_nest_*', 'nest_*', 'xcit_*']
'convit_*', 'levit*', 'visformer*', 'deit*', 'jx_nest_*', 'nest_*', 'xcit_*', 'crossvit_*', 'beit_*']
NUM_NON_STD = len(NON_STD_FILTERS)
# exclude models that cause specific test failures
@ -188,23 +188,22 @@ def test_model_default_cfgs_non_std(model_name, batch_size):
input_tensor = torch.randn((batch_size, *input_size))
# test forward_features (always unpooled)
outputs = model.forward_features(input_tensor)
if isinstance(outputs, tuple):
if isinstance(outputs, (tuple, list)):
outputs = outputs[0]
assert outputs.shape[1] == model.num_features
# test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features
model.reset_classifier(0)
outputs = model.forward(input_tensor)
if isinstance(outputs, tuple):
if isinstance(outputs, (tuple, list)):
outputs = outputs[0]
assert len(outputs.shape) == 2
assert outputs.shape[1] == model.num_features
model = create_model(model_name, pretrained=False, num_classes=0).eval()
outputs = model.forward(input_tensor)
if isinstance(outputs, tuple):
if isinstance(outputs, (tuple, list)):
outputs = outputs[0]
assert len(outputs.shape) == 2
assert outputs.shape[1] == model.num_features

@ -319,10 +319,10 @@ def test_sgd(optimizer):
# lambda opt: ReduceLROnPlateau(opt)]
# )
_test_basic_cases(
lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3, momentum=1)
lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=3e-3, momentum=1)
)
_test_basic_cases(
lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3, momentum=1, weight_decay=.1)
lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=3e-3, momentum=1, weight_decay=.1)
)
_test_rosenbrock(
lambda params: create_optimizer_v2(params, optimizer, lr=1e-3)

@ -1,8 +1,10 @@
from .beit import *
from .byoanet import *
from .byobnet import *
from .cait import *
from .coat import *
from .convit import *
from .crossvit import *
from .cspnet import *
from .densenet import *
from .dla import *
@ -36,6 +38,7 @@ from .sknet import *
from .swin_transformer import *
from .tnt import *
from .tresnet import *
from .twins import *
from .vgg import *
from .visformer import *
from .vision_transformer import *
@ -44,7 +47,6 @@ from .vovnet import *
from .xception import *
from .xception_aligned import *
from .xcit import *
from .twins import *
from .factory import create_model, split_model_name, safe_model_name
from .helpers import load_checkpoint, resume_checkpoint, model_parameters

@ -0,0 +1,420 @@
""" BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
Model from official source: https://github.com/microsoft/unilm/tree/master/beit
At this point only the 1k fine-tuned classification weights and model configs have been added,
see original source above for pre-training models and procedure.
Modifications by / Copyright 2021 Ross Wightman, original copyrights below
"""
# --------------------------------------------------------
# BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
# Github source: https://github.com/microsoft/unilm/tree/master/beit
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# By Hangbo Bao
# Based on timm and DeiT code bases
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import math
from functools import partial
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from .helpers import build_model_with_cfg
from .layers import PatchEmbed, Mlp, DropPath, trunc_normal_
from .registry import register_model
from .vision_transformer import checkpoint_filter_fn
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
'beit_base_patch16_224': _cfg(
url='https://unilm.blob.core.windows.net/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth'),
'beit_base_patch16_384': _cfg(
url='https://unilm.blob.core.windows.net/beit/beit_base_patch16_384_pt22k_ft22kto1k.pth',
input_size=(3, 384, 384), crop_pct=1.0,
),
'beit_base_patch16_224_in22k': _cfg(
url='https://unilm.blob.core.windows.net/beit/beit_base_patch16_224_pt22k_ft22k.pth',
num_classes=21841,
),
'beit_large_patch16_224': _cfg(
url='https://unilm.blob.core.windows.net/beit/beit_large_patch16_224_pt22k_ft22kto1k.pth'),
'beit_large_patch16_384': _cfg(
url='https://unilm.blob.core.windows.net/beit/beit_large_patch16_384_pt22k_ft22kto1k.pth',
input_size=(3, 384, 384), crop_pct=1.0,
),
'beit_large_patch16_512': _cfg(
url='https://unilm.blob.core.windows.net/beit/beit_large_patch16_512_pt22k_ft22kto1k.pth',
input_size=(3, 512, 512), crop_pct=1.0,
),
'beit_large_patch16_224_in22k': _cfg(
url='https://unilm.blob.core.windows.net/beit/beit_large_patch16_224_pt22k_ft22k.pth',
num_classes=21841,
),
}
class Attention(nn.Module):
def __init__(
self, dim, num_heads=8, qkv_bias=False, attn_drop=0.,
proj_drop=0., window_size=None, attn_head_dim=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.v_bias = None
if window_size:
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = \
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
else:
self.window_size = None
self.relative_position_bias_table = None
self.relative_position_index = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, rel_pos_bias: Optional[torch.Tensor] = None):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
if torch.jit.is_scripting():
# FIXME requires_grad breaks w/ torchscript
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias), self.v_bias))
else:
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
if self.relative_position_bias_table is not None:
relative_position_bias = \
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if rel_pos_bias is not None:
attn = attn + rel_pos_bias
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
window_size=None, attn_head_dim=None):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
window_size=window_size, attn_head_dim=attn_head_dim)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if init_values:
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
else:
self.gamma_1, self.gamma_2 = None, None
def forward(self, x, rel_pos_bias: Optional[torch.Tensor] = None):
if self.gamma_1 is None:
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class RelativePositionBias(nn.Module):
def __init__(self, window_size, num_heads):
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = \
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
# trunc_normal_(self.relative_position_bias_table, std=.02)
def forward(self):
relative_position_bias = \
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
class Beit(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=None,
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False,
use_mean_pooling=True, init_scale=0.001):
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
if use_abs_pos_emb:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
else:
self.pos_embed = None
self.pos_drop = nn.Dropout(p=drop_rate)
if use_shared_rel_pos_bias:
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.grid_size, num_heads=num_heads)
else:
self.rel_pos_bias = None
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.use_rel_pos_bias = use_rel_pos_bias
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
init_values=init_values, window_size=self.patch_embed.grid_size if use_rel_pos_bias else None)
for i in range(depth)])
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
if self.pos_embed is not None:
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
# trunc_normal_(self.mask_token, std=.02)
self.fix_init_weight()
if isinstance(self.head, nn.Linear):
trunc_normal_(self.head.weight, std=.02)
self.head.weight.data.mul_(init_scale)
self.head.bias.data.mul_(init_scale)
def fix_init_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
x = self.patch_embed(x)
batch_size, seq_len, _ = x.size()
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
for blk in self.blocks:
x = blk(x, rel_pos_bias=rel_pos_bias)
x = self.norm(x)
if self.fc_norm is not None:
t = x[:, 1:, :]
return self.fc_norm(t.mean(1))
else:
return x[:, 0]
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def _create_beit(variant, pretrained=False, default_cfg=None, **kwargs):
default_cfg = default_cfg or default_cfgs[variant]
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Beit models.')
model = build_model_with_cfg(
Beit, variant, pretrained,
default_cfg=default_cfg,
# FIXME an updated filter fn needed to interpolate rel pos emb if fine tuning to diff model sizes
pretrained_filter_fn=checkpoint_filter_fn,
**kwargs)
return model
@register_model
def beit_base_patch16_224(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, **kwargs)
model = _create_beit('beit_base_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def beit_base_patch16_384(pretrained=False, **kwargs):
model_kwargs = dict(
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, **kwargs)
model = _create_beit('beit_base_patch16_384', pretrained=pretrained, **model_kwargs)
return model
@register_model
def beit_base_patch16_224_in22k(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, **kwargs)
model = _create_beit('beit_base_patch16_224_in22k', pretrained=pretrained, **model_kwargs)
return model
@register_model
def beit_large_patch16_224(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
model = _create_beit('beit_large_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def beit_large_patch16_384(pretrained=False, **kwargs):
model_kwargs = dict(
img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
model = _create_beit('beit_large_patch16_384', pretrained=pretrained, **model_kwargs)
return model
@register_model
def beit_large_patch16_512(pretrained=False, **kwargs):
model_kwargs = dict(
img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
model = _create_beit('beit_large_patch16_512', pretrained=pretrained, **model_kwargs)
return model
@register_model
def beit_large_patch16_224_in22k(pretrained=False, **kwargs):
model_kwargs = dict(
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs)
model = _create_beit('beit_large_patch16_224_in22k', pretrained=pretrained, **model_kwargs)
return model

@ -0,0 +1,497 @@
""" CrossViT Model
@inproceedings{
chen2021crossvit,
title={{CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification}},
author={Chun-Fu (Richard) Chen and Quanfu Fan and Rameswar Panda},
booktitle={International Conference on Computer Vision (ICCV)},
year={2021}
}
Paper link: https://arxiv.org/abs/2103.14899
Original code: https://github.com/IBM/CrossViT/blob/main/models/crossvit.py
NOTE: model names have been renamed from originals to represent actual input res all *_224 -> *_240 and *_384 -> *_408
"""
# Copyright IBM All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
"""
Modifed from Timm. https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.hub
from functools import partial
from typing import List
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import DropPath, to_2tuple, trunc_normal_
from .registry import register_model
from .vision_transformer import Mlp, Block
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 240, 240), 'pool_size': None, 'crop_pct': 0.875,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'fixed_input_size': True,
'first_conv': ('patch_embed.0.proj', 'patch_embed.1.proj'),
'classifier': ('head.0', 'head.1'),
**kwargs
}
default_cfgs = {
'crossvit_15_240': _cfg(url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_15_224.pth'),
'crossvit_15_dagger_240': _cfg(
url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_15_dagger_224.pth',
first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'),
),
'crossvit_15_dagger_408': _cfg(
url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_15_dagger_384.pth',
input_size=(3, 408, 408), first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), crop_pct=1.0,
),
'crossvit_18_240': _cfg(url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_18_224.pth'),
'crossvit_18_dagger_240': _cfg(
url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_18_dagger_224.pth',
first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'),
),
'crossvit_18_dagger_408': _cfg(
url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_18_dagger_384.pth',
input_size=(3, 408, 408), first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'), crop_pct=1.0,
),
'crossvit_9_240': _cfg(url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_9_224.pth'),
'crossvit_9_dagger_240': _cfg(
url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_9_dagger_224.pth',
first_conv=('patch_embed.0.proj.0', 'patch_embed.1.proj.0'),
),
'crossvit_base_240': _cfg(
url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_base_224.pth'),
'crossvit_small_240': _cfg(
url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_small_224.pth'),
'crossvit_tiny_240': _cfg(
url='https://github.com/IBM/CrossViT/releases/download/weights-0.1/crossvit_tiny_224.pth'),
}
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, multi_conv=False):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
if multi_conv:
if patch_size[0] == 12:
self.proj = nn.Sequential(
nn.Conv2d(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3),
nn.ReLU(inplace=True),
nn.Conv2d(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=3, padding=0),
nn.ReLU(inplace=True),
nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=1, padding=1),
)
elif patch_size[0] == 16:
self.proj = nn.Sequential(
nn.Conv2d(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3),
nn.ReLU(inplace=True),
nn.Conv2d(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=2, padding=1),
)
else:
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class CrossAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.wq = nn.Linear(dim, dim, bias=qkv_bias)
self.wk = nn.Linear(dim, dim, bias=qkv_bias)
self.wv = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
# B1C -> B1H(C/H) -> BH1(C/H)
q = self.wq(x[:, 0:1, ...]).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
# BNC -> BNH(C/H) -> BHN(C/H)
k = self.wk(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
# BNC -> BNH(C/H) -> BHN(C/H)
v = self.wv(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
attn = (q @ k.transpose(-2, -1)) * self.scale # BH1(C/H) @ BH(C/H)N -> BH1N
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, 1, C) # (BH1N @ BHN(C/H)) -> BH1(C/H) -> B1H(C/H) -> B1C
x = self.proj(x)
x = self.proj_drop(x)
return x
class CrossAttentionBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = CrossAttention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
x = x[:, 0:1, ...] + self.drop_path(self.attn(self.norm1(x)))
return x
class MultiScaleBlock(nn.Module):
def __init__(self, dim, patches, depth, num_heads, mlp_ratio, qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
num_branches = len(dim)
self.num_branches = num_branches
# different branch could have different embedding size, the first one is the base
self.blocks = nn.ModuleList()
for d in range(num_branches):
tmp = []
for i in range(depth[d]):
tmp.append(Block(
dim=dim[d], num_heads=num_heads[d], mlp_ratio=mlp_ratio[d], qkv_bias=qkv_bias,
drop=drop, attn_drop=attn_drop, drop_path=drop_path[i], norm_layer=norm_layer))
if len(tmp) != 0:
self.blocks.append(nn.Sequential(*tmp))
if len(self.blocks) == 0:
self.blocks = None
self.projs = nn.ModuleList()
for d in range(num_branches):
if dim[d] == dim[(d + 1) % num_branches] and False:
tmp = [nn.Identity()]
else:
tmp = [norm_layer(dim[d]), act_layer(), nn.Linear(dim[d], dim[(d + 1) % num_branches])]
self.projs.append(nn.Sequential(*tmp))
self.fusion = nn.ModuleList()
for d in range(num_branches):
d_ = (d + 1) % num_branches
nh = num_heads[d_]
if depth[-1] == 0: # backward capability:
self.fusion.append(
CrossAttentionBlock(
dim=dim[d_], num_heads=nh, mlp_ratio=mlp_ratio[d], qkv_bias=qkv_bias,
drop=drop, attn_drop=attn_drop, drop_path=drop_path[-1], norm_layer=norm_layer))
else:
tmp = []
for _ in range(depth[-1]):
tmp.append(CrossAttentionBlock(
dim=dim[d_], num_heads=nh, mlp_ratio=mlp_ratio[d], qkv_bias=qkv_bias,
drop=drop, attn_drop=attn_drop, drop_path=drop_path[-1], norm_layer=norm_layer))
self.fusion.append(nn.Sequential(*tmp))
self.revert_projs = nn.ModuleList()
for d in range(num_branches):
if dim[(d + 1) % num_branches] == dim[d] and False:
tmp = [nn.Identity()]
else:
tmp = [norm_layer(dim[(d + 1) % num_branches]), act_layer(),
nn.Linear(dim[(d + 1) % num_branches], dim[d])]
self.revert_projs.append(nn.Sequential(*tmp))
def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]:
outs_b = []
for i, block in enumerate(self.blocks):
outs_b.append(block(x[i]))
# only take the cls token out
proj_cls_token = torch.jit.annotate(List[torch.Tensor], [])
for i, proj in enumerate(self.projs):
proj_cls_token.append(proj(outs_b[i][:, 0:1, ...]))
# cross attention
outs = []
for i, (fusion, revert_proj) in enumerate(zip(self.fusion, self.revert_projs)):
tmp = torch.cat((proj_cls_token[i], outs_b[(i + 1) % self.num_branches][:, 1:, ...]), dim=1)
tmp = fusion(tmp)
reverted_proj_cls_token = revert_proj(tmp[:, 0:1, ...])
tmp = torch.cat((reverted_proj_cls_token, outs_b[i][:, 1:, ...]), dim=1)
outs.append(tmp)
return outs
def _compute_num_patches(img_size, patches):
return [i[0] // p * i[1] // p for i, p in zip(img_size, patches)]
class CrossViT(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(
self, img_size=224, img_scale=(1.0, 1.0), patch_size=(8, 16), in_chans=3, num_classes=1000,
embed_dim=(192, 384), depth=((1, 3, 1), (1, 3, 1), (1, 3, 1)), num_heads=(6, 12), mlp_ratio=(2., 2., 4.),
qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
norm_layer=partial(nn.LayerNorm, eps=1e-6), multi_conv=False, crop_scale=False,
):
super().__init__()
self.num_classes = num_classes
self.img_size = to_2tuple(img_size)
img_scale = to_2tuple(img_scale)
self.img_size_scaled = [tuple([int(sj * si) for sj in self.img_size]) for si in img_scale]
self.crop_scale = crop_scale # crop instead of interpolate for scale
num_patches = _compute_num_patches(self.img_size_scaled, patch_size)
self.num_branches = len(patch_size)
self.embed_dim = embed_dim
self.num_features = embed_dim[0] # to pass the tests
self.patch_embed = nn.ModuleList()
# hard-coded for torch jit script
for i in range(self.num_branches):
setattr(self, f'pos_embed_{i}', nn.Parameter(torch.zeros(1, 1 + num_patches[i], embed_dim[i])))
setattr(self, f'cls_token_{i}', nn.Parameter(torch.zeros(1, 1, embed_dim[i])))
for im_s, p, d in zip(self.img_size_scaled, patch_size, embed_dim):
self.patch_embed.append(
PatchEmbed(img_size=im_s, patch_size=p, in_chans=in_chans, embed_dim=d, multi_conv=multi_conv))
self.pos_drop = nn.Dropout(p=drop_rate)
total_depth = sum([sum(x[-2:]) for x in depth])
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, total_depth)] # stochastic depth decay rule
dpr_ptr = 0
self.blocks = nn.ModuleList()
for idx, block_cfg in enumerate(depth):
curr_depth = max(block_cfg[:-1]) + block_cfg[-1]
dpr_ = dpr[dpr_ptr:dpr_ptr + curr_depth]
blk = MultiScaleBlock(
embed_dim, num_patches, block_cfg, num_heads=num_heads, mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr_, norm_layer=norm_layer)
dpr_ptr += curr_depth
self.blocks.append(blk)
self.norm = nn.ModuleList([norm_layer(embed_dim[i]) for i in range(self.num_branches)])
self.head = nn.ModuleList([
nn.Linear(embed_dim[i], num_classes) if num_classes > 0 else nn.Identity()
for i in range(self.num_branches)])
for i in range(self.num_branches):
trunc_normal_(getattr(self, f'pos_embed_{i}'), std=.02)
trunc_normal_(getattr(self, f'cls_token_{i}'), std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
out = set()
for i in range(self.num_branches):
out.add(f'cls_token_{i}')
pe = getattr(self, f'pos_embed_{i}', None)
if pe is not None and pe.requires_grad:
out.add(f'pos_embed_{i}')
return out
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.ModuleList(
[nn.Linear(self.embed_dim[i], num_classes) if num_classes > 0 else nn.Identity() for i in
range(self.num_branches)])
def forward_features(self, x):
B, C, H, W = x.shape
xs = []
for i, patch_embed in enumerate(self.patch_embed):
x_ = x
ss = self.img_size_scaled[i]
if H != ss[0] or W != ss[1]:
if self.crop_scale and ss[0] <= H and ss[1] <= W:
cu, cl = int(round((H - ss[0]) / 2.)), int(round((W - ss[1]) / 2.))
x_ = x_[:, :, cu:cu + ss[0], cl:cl + ss[1]]
else:
x_ = torch.nn.functional.interpolate(x_, size=ss, mode='bicubic', align_corners=False)
x_ = patch_embed(x_)
cls_tokens = self.cls_token_0 if i == 0 else self.cls_token_1 # hard-coded for torch jit script
cls_tokens = cls_tokens.expand(B, -1, -1)
x_ = torch.cat((cls_tokens, x_), dim=1)
pos_embed = self.pos_embed_0 if i == 0 else self.pos_embed_1 # hard-coded for torch jit script
x_ = x_ + pos_embed
x_ = self.pos_drop(x_)
xs.append(x_)
for i, blk in enumerate(self.blocks):
xs = blk(xs)
# NOTE: was before branch token section, move to here to assure all branch token are before layer norm
xs = [norm(xs[i]) for i, norm in enumerate(self.norm)]
return [xo[:, 0] for xo in xs]
def forward(self, x):
xs = self.forward_features(x)
ce_logits = [head(xs[i]) for i, head in enumerate(self.head)]
if not isinstance(self.head[0], nn.Identity):
ce_logits = torch.mean(torch.stack(ce_logits, dim=0), dim=0)
return ce_logits
def _create_crossvit(variant, pretrained=False, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
def pretrained_filter_fn(state_dict):
new_state_dict = {}
for key in state_dict.keys():
if 'pos_embed' in key or 'cls_token' in key:
new_key = key.replace(".", "_")
else:
new_key = key
new_state_dict[new_key] = state_dict[key]
return new_state_dict
return build_model_with_cfg(
CrossViT, variant, pretrained,
default_cfg=default_cfgs[variant],
pretrained_filter_fn=pretrained_filter_fn,
**kwargs)
@register_model
def crossvit_tiny_240(pretrained=False, **kwargs):
model_args = dict(
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[96, 192], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]],
num_heads=[3, 3], mlp_ratio=[4, 4, 1], **kwargs)
model = _create_crossvit(variant='crossvit_tiny_240', pretrained=pretrained, **model_args)
return model
@register_model
def crossvit_small_240(pretrained=False, **kwargs):
model_args = dict(
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]],
num_heads=[6, 6], mlp_ratio=[4, 4, 1], **kwargs)
model = _create_crossvit(variant='crossvit_small_240', pretrained=pretrained, **model_args)
return model
@register_model
def crossvit_base_240(pretrained=False, **kwargs):
model_args = dict(
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[384, 768], depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]],
num_heads=[12, 12], mlp_ratio=[4, 4, 1], **kwargs)
model = _create_crossvit(variant='crossvit_base_240', pretrained=pretrained, **model_args)
return model
@register_model
def crossvit_9_240(pretrained=False, **kwargs):
model_args = dict(
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[128, 256], depth=[[1, 3, 0], [1, 3, 0], [1, 3, 0]],
num_heads=[4, 4], mlp_ratio=[3, 3, 1], **kwargs)
model = _create_crossvit(variant='crossvit_9_240', pretrained=pretrained, **model_args)
return model
@register_model
def crossvit_15_240(pretrained=False, **kwargs):
model_args = dict(
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]],
num_heads=[6, 6], mlp_ratio=[3, 3, 1], **kwargs)
model = _create_crossvit(variant='crossvit_15_240', pretrained=pretrained, **model_args)
return model
@register_model
def crossvit_18_240(pretrained=False, **kwargs):
model_args = dict(
img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]],
num_heads=[7, 7], mlp_ratio=[3, 3, 1], **kwargs)
model = _create_crossvit(variant='crossvit_18_240', pretrained=pretrained, **model_args)
return model
@register_model
def crossvit_9_dagger_240(pretrained=False, **kwargs):
model_args = dict(
img_scale=(1.0, 224 / 240), patch_size=[12, 16], embed_dim=[128, 256], depth=[[1, 3, 0], [1, 3, 0], [1, 3, 0]],
num_heads=[4, 4], mlp_ratio=[3, 3, 1], multi_conv=True, **kwargs)
model = _create_crossvit(variant='crossvit_9_dagger_240', pretrained=pretrained, **model_args)
return model
@register_model
def crossvit_15_dagger_240(pretrained=False, **kwargs):
model_args = dict(
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]],
num_heads=[6, 6], mlp_ratio=[3, 3, 1], multi_conv=True, **kwargs)
model = _create_crossvit(variant='crossvit_15_dagger_240', pretrained=pretrained, **model_args)
return model
@register_model
def crossvit_15_dagger_408(pretrained=False, **kwargs):
model_args = dict(
img_scale=(1.0, 384/408), patch_size=[12, 16], embed_dim=[192, 384], depth=[[1, 5, 0], [1, 5, 0], [1, 5, 0]],
num_heads=[6, 6], mlp_ratio=[3, 3, 1], multi_conv=True, **kwargs)
model = _create_crossvit(variant='crossvit_15_dagger_408', pretrained=pretrained, **model_args)
return model
@register_model
def crossvit_18_dagger_240(pretrained=False, **kwargs):
model_args = dict(
img_scale=(1.0, 224/240), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]],
num_heads=[7, 7], mlp_ratio=[3, 3, 1], multi_conv=True, **kwargs)
model = _create_crossvit(variant='crossvit_18_dagger_240', pretrained=pretrained, **model_args)
return model
@register_model
def crossvit_18_dagger_408(pretrained=False, **kwargs):
model_args = dict(
img_scale=(1.0, 384/408), patch_size=[12, 16], embed_dim=[224, 448], depth=[[1, 6, 0], [1, 6, 0], [1, 6, 0]],
num_heads=[7, 7], mlp_ratio=[3, 3, 1], multi_conv=True, **kwargs)
model = _create_crossvit(variant='crossvit_18_dagger_408', pretrained=pretrained, **model_args)
return model

@ -683,7 +683,7 @@ def vit_large_patch16_384(pretrained=False, **kwargs):
def vit_base_patch16_sam_224(pretrained=False, **kwargs):
""" ViT-Base (ViT-B/16) w/ SAM pretrained weights. Paper: https://arxiv.org/abs/2106.01548
"""
# NOTE original SAM weights releaes worked with representation_size=768
# NOTE original SAM weights release worked with representation_size=768
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, representation_size=0, **kwargs)
model = _create_vision_transformer('vit_base_patch16_sam_224', pretrained=pretrained, **model_kwargs)
return model
@ -693,7 +693,7 @@ def vit_base_patch16_sam_224(pretrained=False, **kwargs):
def vit_base_patch32_sam_224(pretrained=False, **kwargs):
""" ViT-Base (ViT-B/32) w/ SAM pretrained weights. Paper: https://arxiv.org/abs/2106.01548
"""
# NOTE original SAM weights releaes worked with representation_size=768
# NOTE original SAM weights release worked with representation_size=768
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, representation_size=0, **kwargs)
model = _create_vision_transformer('vit_base_patch32_sam_224', pretrained=pretrained, **model_kwargs)
return model

Loading…
Cancel
Save