|
|
@ -536,6 +536,7 @@ class Mlp(nn.Module):
|
|
|
|
self.drop2 = nn.Dropout(drop_probs[1])
|
|
|
|
self.drop2 = nn.Dropout(drop_probs[1])
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
def forward(self, x):
|
|
|
|
|
|
|
|
print(x)
|
|
|
|
x = self.fc1(x)
|
|
|
|
x = self.fc1(x)
|
|
|
|
x = self.act(x)
|
|
|
|
x = self.act(x)
|
|
|
|
x = self.drop1(x)
|
|
|
|
x = self.drop1(x)
|
|
|
@ -612,9 +613,8 @@ class MetaFormerBlock(nn.Module):
|
|
|
|
if res_scale_init_value else nn.Identity()
|
|
|
|
if res_scale_init_value else nn.Identity()
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
def forward(self, x):
|
|
|
|
#B, C, H, W = x.shape
|
|
|
|
B, C, H, W = x.shape
|
|
|
|
#x = x.view(B, H, W, C)
|
|
|
|
x = x.view(B, H, W, C)
|
|
|
|
x = x.permute(0, 2, 3, 1)
|
|
|
|
|
|
|
|
x = self.res_scale1(x) + \
|
|
|
|
x = self.res_scale1(x) + \
|
|
|
|
self.layer_scale1(
|
|
|
|
self.layer_scale1(
|
|
|
|
self.drop_path1(
|
|
|
|
self.drop_path1(
|
|
|
@ -627,8 +627,7 @@ class MetaFormerBlock(nn.Module):
|
|
|
|
self.mlp(self.norm2(x))
|
|
|
|
self.mlp(self.norm2(x))
|
|
|
|
)
|
|
|
|
)
|
|
|
|
)
|
|
|
|
)
|
|
|
|
#x = x.view(B, C, H, W)
|
|
|
|
x = x.view(B, C, H, W)
|
|
|
|
x = x.permute(0, 3, 1, 2)
|
|
|
|
|
|
|
|
return x
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class MetaFormer(nn.Module):
|
|
|
|
class MetaFormer(nn.Module):
|
|
|
@ -814,31 +813,25 @@ class MetaFormer(nn.Module):
|
|
|
|
x = self.norm(x)
|
|
|
|
x = self.norm(x)
|
|
|
|
# (B, H, W, C) -> (B, C)
|
|
|
|
# (B, H, W, C) -> (B, C)
|
|
|
|
x = self.head(x)
|
|
|
|
x = self.head(x)
|
|
|
|
#x=self.head(self.norm(x.mean([2, 3])))
|
|
|
|
|
|
|
|
return x
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
def forward_features(self, x):
|
|
|
|
x = self.patch_embed(x)
|
|
|
|
x = self.patch_embed(x)
|
|
|
|
print('timm')
|
|
|
|
x = self.stages(x)
|
|
|
|
#x = self.stages(x)
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
for i, stage in enumerate(self.stages):
|
|
|
|
|
|
|
|
x=stage(x)
|
|
|
|
|
|
|
|
#print(x[0][0][0][0])
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return x
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.forward_features(x)
|
|
|
|
x = self.forward_features(x)
|
|
|
|
x = self.forward_head(x)
|
|
|
|
x = self.forward_head(x)
|
|
|
|
|
|
|
|
print('timm')
|
|
|
|
return x
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model):
|
|
|
|
def checkpoint_filter_fn(state_dict, model):
|
|
|
|
import re
|
|
|
|
import re
|
|
|
|
out_dict = {}
|
|
|
|
out_dict = {}
|
|
|
|
for k, v in state_dict.items():
|
|
|
|
for k, v in state_dict.items():
|
|
|
|
'''
|
|
|
|
|
|
|
|
k = k.replace('proj', 'conv')
|
|
|
|
k = k.replace('proj', 'conv')
|
|
|
|
k = re.sub(r'layer_scale_([0-9]+)', r'layer_scale\1.scale', k)
|
|
|
|
k = re.sub(r'layer_scale_([0-9]+)', r'layer_scale\1.scale', k)
|
|
|
|
k = k.replace('network.1', 'downsample_layers.1')
|
|
|
|
k = k.replace('network.1', 'downsample_layers.1')
|
|
|
@ -848,7 +841,6 @@ def checkpoint_filter_fn(state_dict, model):
|
|
|
|
k = k.replace('network.4', 'network.2')
|
|
|
|
k = k.replace('network.4', 'network.2')
|
|
|
|
k = k.replace('network.6', 'network.3')
|
|
|
|
k = k.replace('network.6', 'network.3')
|
|
|
|
k = k.replace('network', 'stages')
|
|
|
|
k = k.replace('network', 'stages')
|
|
|
|
'''
|
|
|
|
|
|
|
|
k = re.sub(r'downsample_layers.([0-9]+)', r'stages.\1.downsample', k)
|
|
|
|
k = re.sub(r'downsample_layers.([0-9]+)', r'stages.\1.downsample', k)
|
|
|
|
k = re.sub(r'([0-9]+).([0-9]+)', r'\1.blocks.\2', k)
|
|
|
|
k = re.sub(r'([0-9]+).([0-9]+)', r'\1.blocks.\2', k)
|
|
|
|
k = k.replace('stages.0.downsample', 'patch_embed')
|
|
|
|
k = k.replace('stages.0.downsample', 'patch_embed')
|
|
|
|