@ -121,7 +121,7 @@ def gluon_resnet50_v1c(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
"""
"""
default_cfg = default_cfgs [ ' gluon_resnet50_v1c ' ]
default_cfg = default_cfgs [ ' gluon_resnet50_v1c ' ]
model = ResNet ( Bottleneck , [ 3 , 4 , 6 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
model = ResNet ( Bottleneck , [ 3 , 4 , 6 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
stem_width = 32 , deep_stem= True , * * kwargs )
stem_width = 32 , stem_type= ' deep ' , * * kwargs )
model . default_cfg = default_cfg
model . default_cfg = default_cfg
if pretrained :
if pretrained :
load_pretrained ( model , default_cfg , num_classes , in_chans )
load_pretrained ( model , default_cfg , num_classes , in_chans )
@ -134,7 +134,7 @@ def gluon_resnet101_v1c(pretrained=False, num_classes=1000, in_chans=3, **kwargs
"""
"""
default_cfg = default_cfgs [ ' gluon_resnet101_v1c ' ]
default_cfg = default_cfgs [ ' gluon_resnet101_v1c ' ]
model = ResNet ( Bottleneck , [ 3 , 4 , 23 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
model = ResNet ( Bottleneck , [ 3 , 4 , 23 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
stem_width = 32 , deep_stem= True , * * kwargs )
stem_width = 32 , stem_type= ' deep ' , * * kwargs )
model . default_cfg = default_cfg
model . default_cfg = default_cfg
if pretrained :
if pretrained :
load_pretrained ( model , default_cfg , num_classes , in_chans )
load_pretrained ( model , default_cfg , num_classes , in_chans )
@ -147,7 +147,7 @@ def gluon_resnet152_v1c(pretrained=False, num_classes=1000, in_chans=3, **kwargs
"""
"""
default_cfg = default_cfgs [ ' gluon_resnet152_v1c ' ]
default_cfg = default_cfgs [ ' gluon_resnet152_v1c ' ]
model = ResNet ( Bottleneck , [ 3 , 8 , 36 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
model = ResNet ( Bottleneck , [ 3 , 8 , 36 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
stem_width = 32 , deep_stem= True , * * kwargs )
stem_width = 32 , stem_type= ' deep ' , * * kwargs )
model . default_cfg = default_cfg
model . default_cfg = default_cfg
if pretrained :
if pretrained :
load_pretrained ( model , default_cfg , num_classes , in_chans )
load_pretrained ( model , default_cfg , num_classes , in_chans )
@ -160,7 +160,7 @@ def gluon_resnet50_v1d(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
"""
"""
default_cfg = default_cfgs [ ' gluon_resnet50_v1d ' ]
default_cfg = default_cfgs [ ' gluon_resnet50_v1d ' ]
model = ResNet ( Bottleneck , [ 3 , 4 , 6 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
model = ResNet ( Bottleneck , [ 3 , 4 , 6 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
stem_width = 32 , deep_stem= True , avg_down = True , * * kwargs )
stem_width = 32 , stem_type= ' deep ' , avg_down = True , * * kwargs )
model . default_cfg = default_cfg
model . default_cfg = default_cfg
if pretrained :
if pretrained :
load_pretrained ( model , default_cfg , num_classes , in_chans )
load_pretrained ( model , default_cfg , num_classes , in_chans )
@ -173,7 +173,7 @@ def gluon_resnet101_v1d(pretrained=False, num_classes=1000, in_chans=3, **kwargs
"""
"""
default_cfg = default_cfgs [ ' gluon_resnet101_v1d ' ]
default_cfg = default_cfgs [ ' gluon_resnet101_v1d ' ]
model = ResNet ( Bottleneck , [ 3 , 4 , 23 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
model = ResNet ( Bottleneck , [ 3 , 4 , 23 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
stem_width = 32 , deep_stem= True , avg_down = True , * * kwargs )
stem_width = 32 , stem_type= ' deep ' , avg_down = True , * * kwargs )
model . default_cfg = default_cfg
model . default_cfg = default_cfg
if pretrained :
if pretrained :
load_pretrained ( model , default_cfg , num_classes , in_chans )
load_pretrained ( model , default_cfg , num_classes , in_chans )
@ -186,7 +186,7 @@ def gluon_resnet152_v1d(pretrained=False, num_classes=1000, in_chans=3, **kwargs
"""
"""
default_cfg = default_cfgs [ ' gluon_resnet152_v1d ' ]
default_cfg = default_cfgs [ ' gluon_resnet152_v1d ' ]
model = ResNet ( Bottleneck , [ 3 , 8 , 36 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
model = ResNet ( Bottleneck , [ 3 , 8 , 36 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
stem_width = 32 , deep_stem= True , avg_down = True , * * kwargs )
stem_width = 32 , stem_type= ' deep ' , avg_down = True , * * kwargs )
model . default_cfg = default_cfg
model . default_cfg = default_cfg
if pretrained :
if pretrained :
load_pretrained ( model , default_cfg , num_classes , in_chans )
load_pretrained ( model , default_cfg , num_classes , in_chans )
@ -199,7 +199,7 @@ def gluon_resnet50_v1e(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
"""
"""
default_cfg = default_cfgs [ ' gluon_resnet50_v1e ' ]
default_cfg = default_cfgs [ ' gluon_resnet50_v1e ' ]
model = ResNet ( Bottleneck , [ 3 , 4 , 6 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
model = ResNet ( Bottleneck , [ 3 , 4 , 6 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
stem_width = 64 , deep_stem= True , avg_down = True , * * kwargs )
stem_width = 64 , stem_type= ' deep ' , avg_down = True , * * kwargs )
model . default_cfg = default_cfg
model . default_cfg = default_cfg
#if pretrained:
#if pretrained:
# load_pretrained(model, default_cfg, num_classes, in_chans)
# load_pretrained(model, default_cfg, num_classes, in_chans)
@ -212,7 +212,7 @@ def gluon_resnet101_v1e(pretrained=False, num_classes=1000, in_chans=3, **kwargs
"""
"""
default_cfg = default_cfgs [ ' gluon_resnet101_v1e ' ]
default_cfg = default_cfgs [ ' gluon_resnet101_v1e ' ]
model = ResNet ( Bottleneck , [ 3 , 4 , 23 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
model = ResNet ( Bottleneck , [ 3 , 4 , 23 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
stem_width = 64 , deep_stem= True , avg_down = True , * * kwargs )
stem_width = 64 , stem_type= ' deep ' , avg_down = True , * * kwargs )
model . default_cfg = default_cfg
model . default_cfg = default_cfg
if pretrained :
if pretrained :
load_pretrained ( model , default_cfg , num_classes , in_chans )
load_pretrained ( model , default_cfg , num_classes , in_chans )
@ -225,7 +225,7 @@ def gluon_resnet152_v1e(pretrained=False, num_classes=1000, in_chans=3, **kwargs
"""
"""
default_cfg = default_cfgs [ ' gluon_resnet152_v1e ' ]
default_cfg = default_cfgs [ ' gluon_resnet152_v1e ' ]
model = ResNet ( Bottleneck , [ 3 , 8 , 36 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
model = ResNet ( Bottleneck , [ 3 , 8 , 36 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
stem_width = 64 , deep_stem= True , avg_down = True , * * kwargs )
stem_width = 64 , stem_type= ' deep ' , avg_down = True , * * kwargs )
model . default_cfg = default_cfg
model . default_cfg = default_cfg
if pretrained :
if pretrained :
load_pretrained ( model , default_cfg , num_classes , in_chans )
load_pretrained ( model , default_cfg , num_classes , in_chans )
@ -238,7 +238,7 @@ def gluon_resnet50_v1s(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
"""
"""
default_cfg = default_cfgs [ ' gluon_resnet50_v1s ' ]
default_cfg = default_cfgs [ ' gluon_resnet50_v1s ' ]
model = ResNet ( Bottleneck , [ 3 , 4 , 6 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
model = ResNet ( Bottleneck , [ 3 , 4 , 6 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
stem_width = 64 , deep_stem= True , * * kwargs )
stem_width = 64 , stem_type= ' deep ' , * * kwargs )
model . default_cfg = default_cfg
model . default_cfg = default_cfg
if pretrained :
if pretrained :
load_pretrained ( model , default_cfg , num_classes , in_chans )
load_pretrained ( model , default_cfg , num_classes , in_chans )
@ -251,7 +251,7 @@ def gluon_resnet101_v1s(pretrained=False, num_classes=1000, in_chans=3, **kwargs
"""
"""
default_cfg = default_cfgs [ ' gluon_resnet101_v1s ' ]
default_cfg = default_cfgs [ ' gluon_resnet101_v1s ' ]
model = ResNet ( Bottleneck , [ 3 , 4 , 23 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
model = ResNet ( Bottleneck , [ 3 , 4 , 23 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
stem_width = 64 , deep_stem= True , * * kwargs )
stem_width = 64 , stem_type= ' deep ' , * * kwargs )
model . default_cfg = default_cfg
model . default_cfg = default_cfg
if pretrained :
if pretrained :
load_pretrained ( model , default_cfg , num_classes , in_chans )
load_pretrained ( model , default_cfg , num_classes , in_chans )
@ -264,7 +264,7 @@ def gluon_resnet152_v1s(pretrained=False, num_classes=1000, in_chans=3, **kwargs
"""
"""
default_cfg = default_cfgs [ ' gluon_resnet152_v1s ' ]
default_cfg = default_cfgs [ ' gluon_resnet152_v1s ' ]
model = ResNet ( Bottleneck , [ 3 , 8 , 36 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
model = ResNet ( Bottleneck , [ 3 , 8 , 36 , 3 ] , num_classes = num_classes , in_chans = in_chans ,
stem_width = 64 , deep_stem= True , * * kwargs )
stem_width = 64 , stem_type= ' deep ' , * * kwargs )
model . default_cfg = default_cfg
model . default_cfg = default_cfg
if pretrained :
if pretrained :
load_pretrained ( model , default_cfg , num_classes , in_chans )
load_pretrained ( model , default_cfg , num_classes , in_chans )
@ -362,7 +362,7 @@ def gluon_senet154(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs [ ' gluon_senet154 ' ]
default_cfg = default_cfgs [ ' gluon_senet154 ' ]
model = ResNet (
model = ResNet (
Bottleneck , [ 3 , 8 , 36 , 3 ] , cardinality = 64 , base_width = 4 , use_se = True ,
Bottleneck , [ 3 , 8 , 36 , 3 ] , cardinality = 64 , base_width = 4 , use_se = True ,
deep_stem= True , down_kernel_size = 3 , block_reduce_first = 2 ,
stem_type= ' deep ' , down_kernel_size = 3 , block_reduce_first = 2 ,
num_classes = num_classes , in_chans = in_chans , * * kwargs )
num_classes = num_classes , in_chans = in_chans , * * kwargs )
model . default_cfg = default_cfg
model . default_cfg = default_cfg
if pretrained :
if pretrained :