|
|
@ -115,7 +115,7 @@ class DenseBlock(nn.ModuleDict):
|
|
|
|
_version = 2
|
|
|
|
_version = 2
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
def __init__(
|
|
|
|
self, num_layers, num_input_features, bn_size, growth_rate, norm_layer=nn.ReLU,
|
|
|
|
self, num_layers, num_input_features, bn_size, growth_rate, norm_layer=BatchNormAct2d,
|
|
|
|
drop_rate=0., memory_efficient=False):
|
|
|
|
drop_rate=0., memory_efficient=False):
|
|
|
|
super(DenseBlock, self).__init__()
|
|
|
|
super(DenseBlock, self).__init__()
|
|
|
|
for i in range(num_layers):
|
|
|
|
for i in range(num_layers):
|
|
|
@ -138,7 +138,7 @@ class DenseBlock(nn.ModuleDict):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DenseTransition(nn.Sequential):
|
|
|
|
class DenseTransition(nn.Sequential):
|
|
|
|
def __init__(self, num_input_features, num_output_features, norm_layer=nn.BatchNorm2d, aa_layer=None):
|
|
|
|
def __init__(self, num_input_features, num_output_features, norm_layer=BatchNormAct2d, aa_layer=None):
|
|
|
|
super(DenseTransition, self).__init__()
|
|
|
|
super(DenseTransition, self).__init__()
|
|
|
|
self.add_module('norm', norm_layer(num_input_features))
|
|
|
|
self.add_module('norm', norm_layer(num_input_features))
|
|
|
|
self.add_module('conv', nn.Conv2d(
|
|
|
|
self.add_module('conv', nn.Conv2d(
|
|
|
|