From 1c9284c640503ad53b819990a4c56985609704e2 Mon Sep 17 00:00:00 2001 From: Ross Wightman Date: Mon, 13 Sep 2021 16:38:23 -0700 Subject: [PATCH] Add BeiT 'finetuned' 1k weights and pretrained 22k weights, pretraining specific (masked) model excluded for now --- tests/test_models.py | 2 +- timm/models/__init__.py | 1 + timm/models/beit.py | 420 ++++++++++++++++++++++++++++++++++++++++ 3 files changed, 422 insertions(+), 1 deletion(-) create mode 100644 timm/models/beit.py diff --git a/tests/test_models.py b/tests/test_models.py index 57d78a8e..c0d0e901 100644 --- a/tests/test_models.py +++ b/tests/test_models.py @@ -17,7 +17,7 @@ if hasattr(torch._C, '_jit_set_profiling_executor'): # transformer models don't support many of the spatial / feature based model functionalities NON_STD_FILTERS = [ 'vit_*', 'tnt_*', 'pit_*', 'swin_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*', - 'convit_*', 'levit*', 'visformer*', 'deit*', 'jx_nest_*', 'nest_*', 'xcit_*', 'crossvit_*'] + 'convit_*', 'levit*', 'visformer*', 'deit*', 'jx_nest_*', 'nest_*', 'xcit_*', 'crossvit_*', 'beit_*'] NUM_NON_STD = len(NON_STD_FILTERS) # exclude models that cause specific test failures diff --git a/timm/models/__init__.py b/timm/models/__init__.py index 7268e081..56a753b1 100644 --- a/timm/models/__init__.py +++ b/timm/models/__init__.py @@ -1,3 +1,4 @@ +from .beit import * from .byoanet import * from .byobnet import * from .cait import * diff --git a/timm/models/beit.py b/timm/models/beit.py new file mode 100644 index 00000000..e8d1dd2c --- /dev/null +++ b/timm/models/beit.py @@ -0,0 +1,420 @@ +""" BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) + +Model from official source: https://github.com/microsoft/unilm/tree/master/beit + +At this point only the 1k fine-tuned classification weights and model configs have been added, +see original source above for pre-training models and procedure. + +Modifications by / Copyright 2021 Ross Wightman, original copyrights below +""" +# -------------------------------------------------------- +# BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) +# Github source: https://github.com/microsoft/unilm/tree/master/beit +# Copyright (c) 2021 Microsoft +# Licensed under The MIT License [see LICENSE for details] +# By Hangbo Bao +# Based on timm and DeiT code bases +# https://github.com/rwightman/pytorch-image-models/tree/master/timm +# https://github.com/facebookresearch/deit/ +# https://github.com/facebookresearch/dino +# --------------------------------------------------------' +import math +from functools import partial +from typing import Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .helpers import build_model_with_cfg +from .layers import PatchEmbed, Mlp, DropPath, trunc_normal_ +from .registry import register_model +from .vision_transformer import checkpoint_filter_fn + + +def _cfg(url='', **kwargs): + return { + 'url': url, + 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, + 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, + 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), + 'first_conv': 'patch_embed.proj', 'classifier': 'head', + **kwargs + } + + +default_cfgs = { + 'beit_base_patch16_224': _cfg( + url='https://unilm.blob.core.windows.net/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth'), + 'beit_base_patch16_384': _cfg( + url='https://unilm.blob.core.windows.net/beit/beit_base_patch16_384_pt22k_ft22kto1k.pth', + input_size=(3, 384, 384), crop_pct=1.0, + ), + 'beit_base_patch16_224_in22k': _cfg( + url='https://unilm.blob.core.windows.net/beit/beit_base_patch16_224_pt22k_ft22k.pth', + num_classes=21841, + ), + 'beit_large_patch16_224': _cfg( + url='https://unilm.blob.core.windows.net/beit/beit_large_patch16_224_pt22k_ft22kto1k.pth'), + 'beit_large_patch16_384': _cfg( + url='https://unilm.blob.core.windows.net/beit/beit_large_patch16_384_pt22k_ft22kto1k.pth', + input_size=(3, 384, 384), crop_pct=1.0, + ), + 'beit_large_patch16_512': _cfg( + url='https://unilm.blob.core.windows.net/beit/beit_large_patch16_512_pt22k_ft22kto1k.pth', + input_size=(3, 512, 512), crop_pct=1.0, + ), + 'beit_large_patch16_224_in22k': _cfg( + url='https://unilm.blob.core.windows.net/beit/beit_large_patch16_224_pt22k_ft22k.pth', + num_classes=21841, + ), +} + + +class Attention(nn.Module): + def __init__( + self, dim, num_heads=8, qkv_bias=False, attn_drop=0., + proj_drop=0., window_size=None, attn_head_dim=None): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + if attn_head_dim is not None: + head_dim = attn_head_dim + all_head_dim = head_dim * self.num_heads + self.scale = head_dim ** -0.5 + + self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) + if qkv_bias: + self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) + self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) + else: + self.q_bias = None + self.v_bias = None + + if window_size: + self.window_size = window_size + self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + self.relative_position_bias_table = nn.Parameter( + torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH + # cls to token & token 2 cls & cls to cls + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(window_size[0]) + coords_w = torch.arange(window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * window_size[1] - 1 + relative_position_index = \ + torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) + relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + relative_position_index[0, 0:] = self.num_relative_distance - 3 + relative_position_index[0:, 0] = self.num_relative_distance - 2 + relative_position_index[0, 0] = self.num_relative_distance - 1 + + self.register_buffer("relative_position_index", relative_position_index) + else: + self.window_size = None + self.relative_position_bias_table = None + self.relative_position_index = None + + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(all_head_dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x, rel_pos_bias: Optional[torch.Tensor] = None): + B, N, C = x.shape + qkv_bias = None + if self.q_bias is not None: + if torch.jit.is_scripting(): + # FIXME requires_grad breaks w/ torchscript + qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias), self.v_bias)) + else: + qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) + qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) + qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) + + q = q * self.scale + attn = (q @ k.transpose(-2, -1)) + + if self.relative_position_bias_table is not None: + relative_position_bias = \ + self.relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1] + 1, + self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + attn = attn + relative_position_bias.unsqueeze(0) + + if rel_pos_bias is not None: + attn = attn + rel_pos_bias + + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, -1) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class Block(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., + drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, + window_size=None, attn_head_dim=None): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, + window_size=window_size, attn_head_dim=attn_head_dim) + # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) + + if init_values: + self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) + self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) + else: + self.gamma_1, self.gamma_2 = None, None + + def forward(self, x, rel_pos_bias: Optional[torch.Tensor] = None): + if self.gamma_1 is None: + x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) + x = x + self.drop_path(self.mlp(self.norm2(x))) + else: + x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) + x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) + return x + + +class RelativePositionBias(nn.Module): + + def __init__(self, window_size, num_heads): + super().__init__() + self.window_size = window_size + self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + self.relative_position_bias_table = nn.Parameter( + torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH + # cls to token & token 2 cls & cls to cls + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(window_size[0]) + coords_w = torch.arange(window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * window_size[1] - 1 + relative_position_index = \ + torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) + relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + relative_position_index[0, 0:] = self.num_relative_distance - 3 + relative_position_index[0:, 0] = self.num_relative_distance - 2 + relative_position_index[0, 0] = self.num_relative_distance - 1 + + self.register_buffer("relative_position_index", relative_position_index) + + # trunc_normal_(self.relative_position_bias_table, std=.02) + + def forward(self): + relative_position_bias = \ + self.relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1] + 1, + self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH + return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + + +class Beit(nn.Module): + """ Vision Transformer with support for patch or hybrid CNN input stage + """ + + def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, + num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., + drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=None, + use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, + use_mean_pooling=True, init_scale=0.001): + super().__init__() + self.num_classes = num_classes + self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models + + self.patch_embed = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) + num_patches = self.patch_embed.num_patches + + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + if use_abs_pos_emb: + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) + else: + self.pos_embed = None + self.pos_drop = nn.Dropout(p=drop_rate) + + if use_shared_rel_pos_bias: + self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.grid_size, num_heads=num_heads) + else: + self.rel_pos_bias = None + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + self.use_rel_pos_bias = use_rel_pos_bias + self.blocks = nn.ModuleList([ + Block( + dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, + drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, + init_values=init_values, window_size=self.patch_embed.grid_size if use_rel_pos_bias else None) + for i in range(depth)]) + self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) + self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None + self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + self.apply(self._init_weights) + if self.pos_embed is not None: + trunc_normal_(self.pos_embed, std=.02) + trunc_normal_(self.cls_token, std=.02) + # trunc_normal_(self.mask_token, std=.02) + self.fix_init_weight() + if isinstance(self.head, nn.Linear): + trunc_normal_(self.head.weight, std=.02) + self.head.weight.data.mul_(init_scale) + self.head.bias.data.mul_(init_scale) + + def fix_init_weight(self): + def rescale(param, layer_id): + param.div_(math.sqrt(2.0 * layer_id)) + + for layer_id, layer in enumerate(self.blocks): + rescale(layer.attn.proj.weight.data, layer_id + 1) + rescale(layer.mlp.fc2.weight.data, layer_id + 1) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + def get_num_layers(self): + return len(self.blocks) + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'cls_token'} + + def get_classifier(self): + return self.head + + def reset_classifier(self, num_classes, global_pool=''): + self.num_classes = num_classes + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x): + x = self.patch_embed(x) + batch_size, seq_len, _ = x.size() + + cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks + x = torch.cat((cls_tokens, x), dim=1) + if self.pos_embed is not None: + x = x + self.pos_embed + x = self.pos_drop(x) + + rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None + for blk in self.blocks: + x = blk(x, rel_pos_bias=rel_pos_bias) + + x = self.norm(x) + if self.fc_norm is not None: + t = x[:, 1:, :] + return self.fc_norm(t.mean(1)) + else: + return x[:, 0] + + def forward(self, x): + x = self.forward_features(x) + x = self.head(x) + return x + + +def _create_beit(variant, pretrained=False, default_cfg=None, **kwargs): + default_cfg = default_cfg or default_cfgs[variant] + if kwargs.get('features_only', None): + raise RuntimeError('features_only not implemented for Beit models.') + + model = build_model_with_cfg( + Beit, variant, pretrained, + default_cfg=default_cfg, + # FIXME an updated filter fn needed to interpolate rel pos emb if fine tuning to diff model sizes + pretrained_filter_fn=checkpoint_filter_fn, + **kwargs) + return model + + +@register_model +def beit_base_patch16_224(pretrained=False, **kwargs): + model_kwargs = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, + use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, **kwargs) + model = _create_beit('beit_base_patch16_224', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def beit_base_patch16_384(pretrained=False, **kwargs): + model_kwargs = dict( + img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, + use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, **kwargs) + model = _create_beit('beit_base_patch16_384', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def beit_base_patch16_224_in22k(pretrained=False, **kwargs): + model_kwargs = dict( + patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, + use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, **kwargs) + model = _create_beit('beit_base_patch16_224_in22k', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def beit_large_patch16_224(pretrained=False, **kwargs): + model_kwargs = dict( + patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, + use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs) + model = _create_beit('beit_large_patch16_224', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def beit_large_patch16_384(pretrained=False, **kwargs): + model_kwargs = dict( + img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, + use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs) + model = _create_beit('beit_large_patch16_384', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def beit_large_patch16_512(pretrained=False, **kwargs): + model_kwargs = dict( + img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, + use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs) + model = _create_beit('beit_large_patch16_512', pretrained=pretrained, **model_kwargs) + return model + + +@register_model +def beit_large_patch16_224_in22k(pretrained=False, **kwargs): + model_kwargs = dict( + patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, + use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5, **kwargs) + model = _create_beit('beit_large_patch16_224_in22k', pretrained=pretrained, **model_kwargs) + return model