Add initial ConvNeXt impl (mods of official code)

pull/1091/head
Ross Wightman 3 years ago committed by Ross Wightman
parent 656757d26b
commit 18934debc5

@ -5,6 +5,7 @@ from .cait import *
from .coat import * from .coat import *
from .convit import * from .convit import *
from .convmixer import * from .convmixer import *
from .convnext import *
from .crossvit import * from .crossvit import *
from .cspnet import * from .cspnet import *
from .densenet import * from .densenet import *

@ -0,0 +1,375 @@
""" ConvNext
Paper: `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf
Original code and weights from https://github.com/facebookresearch/ConvNeXt, original copyright below
Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman
"""
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the MIT license
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .fx_features import register_notrace_module
from .helpers import named_apply, build_model_with_cfg
from .layers import trunc_normal_, ClassifierHead, SelectAdaptivePool2d, DropPath, ConvMlp, Mlp
from .registry import register_model
__all__ = ['ConvNeXt'] # model_registry will add each entrypoint fn to this
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.0', 'classifier': 'head',
**kwargs
}
default_cfgs = dict(
convnext_tiny=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth"),
convnext_small=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth"),
convnext_base=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth"),
convnext_large=_cfg(url="https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth"),
convnext_tiny_hnf=_cfg(url='', classifier='head.fc'),
convnext_base_in22k=_cfg(
url="https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth", num_classes=21841),
convnext_large_in22k=_cfg(
url="https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth", num_classes=21841),
convnext_xlarge_in22k=_cfg(
url="https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth", num_classes=21841),
)
def _is_contiguous(tensor: torch.Tensor) -> bool:
# jit is oh so lovely :/
# if torch.jit.is_tracing():
# return True
if torch.jit.is_scripting():
return tensor.is_contiguous()
else:
return tensor.is_contiguous(memory_format=torch.contiguous_format)
@register_notrace_module
class LayerNorm2d(nn.Module):
r""" LayerNorm for channels_first tensors with 2d spatial dimensions (ie N, C, H, W).
"""
def __init__(self, normalized_shape, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.normalized_shape = (normalized_shape,)
def forward(self, x) -> torch.Tensor:
if _is_contiguous(x):
return F.layer_norm(
x.permute(0, 2, 3, 1), self.normalized_shape, self.weight, self.bias, self.eps).permute(0, 3, 1, 2)
else:
s, u = torch.var_mean(x, dim=1, keepdim=True)
x = (x - u) * torch.rsqrt(s + self.eps)
x = x * self.weight[:, None, None] + self.bias[:, None, None]
return x
class ConvNeXtBlock(nn.Module):
""" ConvNeXt Block
There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate
choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear
is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW.
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
ls_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, dim, drop_path=0., ls_init_value=1e-6, conv_mlp=True, mlp_ratio=4, norm_layer=None):
super().__init__()
norm_layer = norm_layer or (partial(LayerNorm2d, eps=1e-6) if conv_mlp else partial(nn.LayerNorm, eps=1e-6))
mlp_layer = ConvMlp if conv_mlp else Mlp
self.use_conv_mlp = conv_mlp
self.conv_dw = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
self.norm = norm_layer(dim)
self.mlp = mlp_layer(dim, int(mlp_ratio * dim), act_layer=nn.GELU)
self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
shortcut = x
x = self.conv_dw(x)
if self.use_conv_mlp:
x = self.norm(x)
x = self.mlp(x)
if self.gamma is not None:
x.mul_(self.gamma.reshape(1, -1, 1, 1))
else:
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = self.mlp(x)
if self.gamma is not None:
x.mul_(self.gamma)
x = x.permute(0, 3, 1, 2)
x = self.drop_path(x) + shortcut
return x
class ConvNeXtStage(nn.Module):
def __init__(
self, in_chs, out_chs, stride=2, depth=2, dp_rates=None, ls_init_value=1.0, conv_mlp=True,
norm_layer=None, cl_norm_layer=None, cross_stage=False):
super().__init__()
if in_chs != out_chs or stride > 1:
self.downsample = nn.Sequential(
norm_layer(in_chs),
nn.Conv2d(in_chs, out_chs, kernel_size=stride, stride=stride),
)
else:
self.downsample = nn.Identity()
dp_rates = dp_rates or [0.] * depth
self.blocks = nn.Sequential(*[ConvNeXtBlock(
dim=out_chs, drop_path=dp_rates[j], ls_init_value=ls_init_value, conv_mlp=conv_mlp,
norm_layer=norm_layer if conv_mlp else cl_norm_layer)
for j in range(depth)]
)
def forward(self, x):
x = self.downsample(x)
x = self.blocks(x)
return x
class ConvNeXt(nn.Module):
r""" ConvNeXt
A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf
Args:
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
dims (tuple(int)): Feature dimension at each stage. Default: [96, 192, 384, 768]
drop_rate (float): Head dropout rate
drop_path_rate (float): Stochastic depth rate. Default: 0.
ls_init_value (float): Init value for Layer Scale. Default: 1e-6.
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
"""
def __init__(
self, in_chans=3, num_classes=1000, global_pool='avg', output_stride=32, patch_size=4,
depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), ls_init_value=1e-6, conv_mlp=True,
head_init_scale=1., head_norm_first=False, norm_layer=None, drop_rate=0., drop_path_rate=0.,
):
super().__init__()
assert output_stride == 32
if norm_layer is None:
norm_layer = partial(LayerNorm2d, eps=1e-6)
cl_norm_layer = norm_layer if conv_mlp else partial(nn.LayerNorm, eps=1e-6)
else:
assert conv_mlp,\
'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input'
cl_norm_layer = norm_layer
partial(LayerNorm2d, eps=1e-6)
self.num_classes = num_classes
self.drop_rate = drop_rate
self.feature_info = []
# NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4
self.stem = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size),
norm_layer(dims[0])
)
self.stages = nn.Sequential()
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
curr_stride = patch_size
prev_chs = dims[0]
stages = []
# 4 feature resolution stages, each consisting of multiple residual blocks
for i in range(4):
stride = 2 if i > 0 else 1
# FIXME support dilation / output_stride
curr_stride *= stride
out_chs = dims[i]
stages.append(ConvNeXtStage(
prev_chs, out_chs, stride=stride,
depth=depths[i], dp_rates=dp_rates[i], ls_init_value=ls_init_value, conv_mlp=conv_mlp,
norm_layer=norm_layer, cl_norm_layer=cl_norm_layer)
)
prev_chs = out_chs
# NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')]
self.stages = nn.Sequential(*stages)
self.num_features = prev_chs
if head_norm_first:
# norm -> global pool -> fc ordering, like most other nets (not compat with FB weights)
self.norm = norm_layer(self.num_features) # final norm layer
self.pool = None # global pool in ClassifierHead, pool == None being used to differentiate
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate)
else:
# pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights)
self.pool = SelectAdaptivePool2d(pool_type=global_pool)
# NOTE when cl_norm_layer != norm_layer we could flatten here and use cl, but makes no performance diff
self.norm = norm_layer(self.num_features)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
named_apply(partial(_init_weights, head_init_scale=head_init_scale), self)
def get_classifier(self):
return self.head.fc if self.pool is None else self.head
def reset_classifier(self, num_classes=0, global_pool='avg'):
if self.pool is None:
# norm -> global pool -> fc ordering
self.head = ClassifierHead(
self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
else:
# pool -> norm -> fc
self.pool = SelectAdaptivePool2d(pool_type=global_pool)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
x = self.stem(x)
x = self.stages(x)
if self.pool is None:
# standard head, norm -> spatial pool -> fc
# ideally, last norm is within forward_features, but can only do so if norm precedes pooling
x = self.norm(x)
return x
def forward(self, x):
x = self.forward_features(x)
if self.pool is not None:
# ConvNeXt head, spatial pool -> norm -> fc
# FIXME clean this up
x = self.pool(x)
x = self.norm(x)
if not self.pool.is_identity():
x = x.flatten(1)
if self.drop_rate > 0:
x = F.dropout(x, self.drop_rate, self.training)
x = self.head(x)
return x
def _init_weights(module, name=None, head_init_scale=1.0):
if isinstance(module, nn.Conv2d):
trunc_normal_(module.weight, std=.02)
nn.init.constant_(module.bias, 0)
elif isinstance(module, nn.Linear):
trunc_normal_(module.weight, std=.02)
nn.init.constant_(module.bias, 0)
if name and '.head' in name:
module.weight.data.mul_(head_init_scale)
module.bias.data.mul_(head_init_scale)
def checkpoint_filter_fn(state_dict, model):
""" Remap FB checkpoints -> timm """
if 'model' in state_dict:
state_dict = state_dict['model']
out_dict = {}
import re
for k, v in state_dict.items():
k = k.replace('downsample_layers.0.', 'stem.')
k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k)
k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k)
k = k.replace('dwconv', 'conv_dw')
k = k.replace('pwconv', 'mlp.fc')
if v.ndim == 2 and 'head' not in k:
model_shape = model.state_dict()[k].shape
v = v.reshape(model_shape)
out_dict[k] = v
return out_dict
def _create_convnext(variant, pretrained=False, **kwargs):
model = build_model_with_cfg(
ConvNeXt, variant, pretrained,
default_cfg=default_cfgs[variant],
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
**kwargs)
return model
@register_model
def convnext_tiny(pretrained=False, **kwargs):
model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), **kwargs)
model = _create_convnext('convnext_tiny', pretrained=pretrained, **model_args)
return model
@register_model
def convnext_tiny_hnf(pretrained=False, **kwargs):
model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), head_norm_first=True, **kwargs)
model = _create_convnext('convnext_tiny_hnf', pretrained=pretrained, **model_args)
return model
@register_model
def convnext_small(pretrained=False, **kwargs):
model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
model = _create_convnext('convnext_small', pretrained=pretrained, **model_args)
return model
@register_model
def convnext_base(pretrained=False, **kwargs):
model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
model = _create_convnext('convnext_base', pretrained=pretrained, **model_args)
return model
@register_model
def convnext_large(pretrained=False, **kwargs):
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
model = _create_convnext('convnext_large', pretrained=pretrained, **model_args)
return model
@register_model
def convnext_base_in22k(pretrained=False, **kwargs):
model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
model = _create_convnext('convnext_base_in22k', pretrained=pretrained, **model_args)
return model
@register_model
def convnext_large_in22k(pretrained=False, **kwargs):
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
model = _create_convnext('convnext_large_in22k', pretrained=pretrained, **model_args)
return model
@register_model
def convnext_xlarge_in22k(pretrained=False, **kwargs):
model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], conv_mlp=False, **kwargs)
model = _create_convnext('convnext_xlarge_in22k', pretrained=pretrained, **model_args)
return model
Loading…
Cancel
Save