Add model registry and model listing fns, refactor model_factory/create_model fn

pull/16/head
Ross Wightman 6 years ago
parent 8512436436
commit 171c0b88b6

@ -1,2 +1,2 @@
from .version import __version__ from .version import __version__
from .models import create_model from .models import create_model, list_models, is_model, list_modules, model_entrypoint

@ -1,4 +1,16 @@
from .model_factory import create_model from .inception_v4 import *
from .inception_resnet_v2 import *
from .densenet import *
from .resnet import *
from .dpn import *
from .senet import *
from .xception import *
from .pnasnet import *
from .gen_efficientnet import *
from .inception_v3 import *
from .gluon_resnet import *
from .registry import *
from .factory import create_model
from .helpers import load_checkpoint, resume_checkpoint from .helpers import load_checkpoint, resume_checkpoint
from .test_time_pool import TestTimePoolHead, apply_test_time_pool from .test_time_pool import TestTimePoolHead, apply_test_time_pool

@ -4,13 +4,17 @@ fixed kwargs passthrough and addition of dynamic global avg/max pool.
""" """
from collections import OrderedDict from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from .registry import register_model
from .helpers import load_pretrained from .helpers import load_pretrained
from .adaptive_avgmax_pool import * from .adaptive_avgmax_pool import select_adaptive_pool2d
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
import re import re
_models = ['densenet121', 'densenet169', 'densenet201', 'densenet161'] __all__ = ['DenseNet']
__all__ = ['DenseNet'] + _models
def _cfg(url=''): def _cfg(url=''):
@ -30,71 +34,6 @@ default_cfgs = {
} }
def _filter_pretrained(state_dict):
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
for key in list(state_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
return state_dict
def densenet121(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
default_cfg = default_cfgs['densenet121']
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans, filter_fn=_filter_pretrained)
return model
def densenet169(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
r"""Densenet-169 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
default_cfg = default_cfgs['densenet169']
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 32, 32),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans, filter_fn=_filter_pretrained)
return model
def densenet201(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
r"""Densenet-201 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
default_cfg = default_cfgs['densenet201']
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 48, 32),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans, filter_fn=_filter_pretrained)
return model
def densenet161(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
r"""Densenet-201 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
default_cfg = default_cfgs['densenet161']
model = DenseNet(num_init_features=96, growth_rate=48, block_config=(6, 12, 36, 24),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans, filter_fn=_filter_pretrained)
return model
class _DenseLayer(nn.Sequential): class _DenseLayer(nn.Sequential):
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate): def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
super(_DenseLayer, self).__init__() super(_DenseLayer, self).__init__()
@ -205,3 +144,72 @@ class DenseNet(nn.Module):
def forward(self, x): def forward(self, x):
return self.classifier(self.forward_features(x, pool=True)) return self.classifier(self.forward_features(x, pool=True))
def _filter_pretrained(state_dict):
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
for key in list(state_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
return state_dict
@register_model
def densenet121(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
default_cfg = default_cfgs['densenet121']
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans, filter_fn=_filter_pretrained)
return model
@register_model
def densenet169(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
r"""Densenet-169 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
default_cfg = default_cfgs['densenet169']
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 32, 32),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans, filter_fn=_filter_pretrained)
return model
@register_model
def densenet201(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
r"""Densenet-201 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
default_cfg = default_cfgs['densenet201']
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 48, 32),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans, filter_fn=_filter_pretrained)
return model
@register_model
def densenet161(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
r"""Densenet-201 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
default_cfg = default_cfgs['densenet161']
model = DenseNet(num_init_features=96, growth_rate=48, block_config=(6, 12, 36, 24),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans, filter_fn=_filter_pretrained)
return model

@ -14,12 +14,13 @@ import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from collections import OrderedDict from collections import OrderedDict
from .registry import register_model
from .helpers import load_pretrained from .helpers import load_pretrained
from .adaptive_avgmax_pool import select_adaptive_pool2d from .adaptive_avgmax_pool import select_adaptive_pool2d
from timm.data import IMAGENET_DPN_MEAN, IMAGENET_DPN_STD from timm.data import IMAGENET_DPN_MEAN, IMAGENET_DPN_STD
_models = ['dpn68', 'dpn68b', 'dpn92', 'dpn98', 'dpn131', 'dpn107']
__all__ = ['DPN'] + _models __all__ = ['DPN']
def _cfg(url=''): def _cfg(url=''):
@ -47,78 +48,6 @@ default_cfgs = {
} }
def dpn68(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['dpn68']
model = DPN(
small=True, num_init_features=10, k_r=128, groups=32,
k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def dpn68b(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['dpn68b_extra']
model = DPN(
small=True, num_init_features=10, k_r=128, groups=32,
b=True, k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def dpn92(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['dpn92_extra']
model = DPN(
num_init_features=64, k_r=96, groups=32,
k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def dpn98(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['dpn98']
model = DPN(
num_init_features=96, k_r=160, groups=40,
k_sec=(3, 6, 20, 3), inc_sec=(16, 32, 32, 128),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def dpn131(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['dpn131']
model = DPN(
num_init_features=128, k_r=160, groups=40,
k_sec=(4, 8, 28, 3), inc_sec=(16, 32, 32, 128),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def dpn107(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['dpn107_extra']
model = DPN(
num_init_features=128, k_r=200, groups=50,
k_sec=(4, 8, 20, 3), inc_sec=(20, 64, 64, 128),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
class CatBnAct(nn.Module): class CatBnAct(nn.Module):
def __init__(self, in_chs, activation_fn=nn.ReLU(inplace=True)): def __init__(self, in_chs, activation_fn=nn.ReLU(inplace=True)):
super(CatBnAct, self).__init__() super(CatBnAct, self).__init__()
@ -317,3 +246,78 @@ class DPN(nn.Module):
return out.view(out.size(0), -1) return out.view(out.size(0), -1)
@register_model
def dpn68(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['dpn68']
model = DPN(
small=True, num_init_features=10, k_r=128, groups=32,
k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
@register_model
def dpn68b(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['dpn68b_extra']
model = DPN(
small=True, num_init_features=10, k_r=128, groups=32,
b=True, k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
@register_model
def dpn92(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['dpn92_extra']
model = DPN(
num_init_features=64, k_r=96, groups=32,
k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
@register_model
def dpn98(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['dpn98']
model = DPN(
num_init_features=96, k_r=160, groups=40,
k_sec=(3, 6, 20, 3), inc_sec=(16, 32, 32, 128),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
@register_model
def dpn131(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['dpn131']
model = DPN(
num_init_features=128, k_r=160, groups=40,
k_sec=(4, 8, 28, 3), inc_sec=(16, 32, 32, 128),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model
def dpn107(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['dpn107_extra']
model = DPN(
num_init_features=128, k_r=200, groups=50,
k_sec=(4, 8, 20, 3), inc_sec=(20, 64, 64, 128),
num_classes=num_classes, in_chans=in_chans, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans)
return model

@ -0,0 +1,44 @@
from .registry import is_model, is_model_in_modules, model_entrypoint
from .helpers import load_checkpoint
def create_model(
model_name,
pretrained=False,
num_classes=1000,
in_chans=3,
checkpoint_path='',
**kwargs):
"""Create a model
Args:
model_name (str): name of model to instantiate
pretrained (bool): load pretrained ImageNet-1k weights if true
num_classes (int): number of classes for final fully connected layer (default: 1000)
in_chans (int): number of input channels / colors (default: 3)
checkpoint_path (str): path of checkpoint to load after model is initialized
Keyword Args:
drop_rate (float): dropout rate for training (default: 0.0)
global_pool (str): global pool type (default: 'avg')
**: other kwargs are model specific
"""
margs = dict(pretrained=pretrained, num_classes=num_classes, in_chans=in_chans)
# Not all models have support for batchnorm params passed as args, only gen_efficientnet variants
supports_bn_params = is_model_in_modules(model_name, ['gen_efficientnet'])
if not supports_bn_params and any([x in kwargs for x in ['bn_tf', 'bn_momentum', 'bn_eps']]):
kwargs.pop('bn_tf', None)
kwargs.pop('bn_momentum', None)
kwargs.pop('bn_eps', None)
if is_model(model_name):
create_fn = model_entrypoint(model_name)
model = create_fn(**margs, **kwargs)
else:
raise RuntimeError('Unknown model (%s)' % model_name)
if checkpoint_path:
load_checkpoint(model, checkpoint_path)
return model

@ -23,19 +23,15 @@ from copy import deepcopy
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from .registry import register_model
from .helpers import load_pretrained from .helpers import load_pretrained
from .adaptive_avgmax_pool import SelectAdaptivePool2d from .adaptive_avgmax_pool import SelectAdaptivePool2d
from .conv2d_same import sconv2d from .conv2d_same import sconv2d
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
_models = [
'mnasnet_050', 'mnasnet_075', 'mnasnet_100', 'mnasnet_b1', 'mnasnet_140', 'semnasnet_050', 'semnasnet_075', __all__ = ['GenEfficientNet']
'semnasnet_100', 'mnasnet_a1', 'semnasnet_140', 'mnasnet_small', 'mobilenetv1_100', 'mobilenetv2_100',
'mobilenetv3_050', 'mobilenetv3_075', 'mobilenetv3_100', 'chamnetv1_100', 'chamnetv2_100',
'fbnetc_100', 'spnasnet_100', 'tflite_mnasnet_100', 'tflite_semnasnet_100', 'efficientnet_b0', 'efficientnet_b1',
'efficientnet_b2', 'efficientnet_b3', 'efficientnet_b4', 'efficientnet_b5', 'tf_efficientnet_b0',
'tf_efficientnet_b1', 'tf_efficientnet_b2', 'tf_efficientnet_b3', 'tf_efficientnet_b4', 'tf_efficientnet_b5']
__all__ = ['GenEfficientNet', 'gen_efficientnet_model_names'] + _models
def _cfg(url='', **kwargs): def _cfg(url='', **kwargs):
@ -1157,6 +1153,7 @@ def _gen_efficientnet(channel_multiplier=1.0, depth_multiplier=1.0, num_classes=
return model return model
@register_model
def mnasnet_050(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def mnasnet_050(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MNASNet B1, depth multiplier of 0.5. """ """ MNASNet B1, depth multiplier of 0.5. """
default_cfg = default_cfgs['mnasnet_050'] default_cfg = default_cfgs['mnasnet_050']
@ -1167,6 +1164,7 @@ def mnasnet_050(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def mnasnet_075(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def mnasnet_075(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MNASNet B1, depth multiplier of 0.75. """ """ MNASNet B1, depth multiplier of 0.75. """
default_cfg = default_cfgs['mnasnet_075'] default_cfg = default_cfgs['mnasnet_075']
@ -1177,6 +1175,7 @@ def mnasnet_075(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def mnasnet_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def mnasnet_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MNASNet B1, depth multiplier of 1.0. """ """ MNASNet B1, depth multiplier of 1.0. """
default_cfg = default_cfgs['mnasnet_100'] default_cfg = default_cfgs['mnasnet_100']
@ -1187,11 +1186,13 @@ def mnasnet_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def mnasnet_b1(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def mnasnet_b1(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MNASNet B1, depth multiplier of 1.0. """ """ MNASNet B1, depth multiplier of 1.0. """
return mnasnet_100(num_classes, in_chans, pretrained, **kwargs) return mnasnet_100(num_classes, in_chans, pretrained, **kwargs)
@register_model
def tflite_mnasnet_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def tflite_mnasnet_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MNASNet B1, depth multiplier of 1.0. """ """ MNASNet B1, depth multiplier of 1.0. """
default_cfg = default_cfgs['tflite_mnasnet_100'] default_cfg = default_cfgs['tflite_mnasnet_100']
@ -1205,6 +1206,7 @@ def tflite_mnasnet_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
return model return model
@register_model
def mnasnet_140(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def mnasnet_140(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MNASNet B1, depth multiplier of 1.4 """ """ MNASNet B1, depth multiplier of 1.4 """
default_cfg = default_cfgs['mnasnet_140'] default_cfg = default_cfgs['mnasnet_140']
@ -1215,6 +1217,7 @@ def mnasnet_140(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def semnasnet_050(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def semnasnet_050(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MNASNet A1 (w/ SE), depth multiplier of 0.5 """ """ MNASNet A1 (w/ SE), depth multiplier of 0.5 """
default_cfg = default_cfgs['semnasnet_050'] default_cfg = default_cfgs['semnasnet_050']
@ -1225,6 +1228,7 @@ def semnasnet_050(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def semnasnet_075(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def semnasnet_075(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MNASNet A1 (w/ SE), depth multiplier of 0.75. """ """ MNASNet A1 (w/ SE), depth multiplier of 0.75. """
default_cfg = default_cfgs['semnasnet_075'] default_cfg = default_cfgs['semnasnet_075']
@ -1235,6 +1239,7 @@ def semnasnet_075(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def semnasnet_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def semnasnet_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MNASNet A1 (w/ SE), depth multiplier of 1.0. """ """ MNASNet A1 (w/ SE), depth multiplier of 1.0. """
default_cfg = default_cfgs['semnasnet_100'] default_cfg = default_cfgs['semnasnet_100']
@ -1245,11 +1250,13 @@ def semnasnet_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def mnasnet_a1(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def mnasnet_a1(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MNASNet A1 (w/ SE), depth multiplier of 1.0. """ """ MNASNet A1 (w/ SE), depth multiplier of 1.0. """
return semnasnet_100(num_classes, in_chans, pretrained, **kwargs) return semnasnet_100(num_classes, in_chans, pretrained, **kwargs)
@register_model
def tflite_semnasnet_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def tflite_semnasnet_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MNASNet A1, depth multiplier of 1.0. """ """ MNASNet A1, depth multiplier of 1.0. """
default_cfg = default_cfgs['tflite_semnasnet_100'] default_cfg = default_cfgs['tflite_semnasnet_100']
@ -1263,6 +1270,7 @@ def tflite_semnasnet_100(pretrained=False, num_classes=1000, in_chans=3, **kwarg
return model return model
@register_model
def semnasnet_140(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def semnasnet_140(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MNASNet A1 (w/ SE), depth multiplier of 1.4. """ """ MNASNet A1 (w/ SE), depth multiplier of 1.4. """
default_cfg = default_cfgs['semnasnet_140'] default_cfg = default_cfgs['semnasnet_140']
@ -1273,6 +1281,7 @@ def semnasnet_140(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def mnasnet_small(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def mnasnet_small(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MNASNet Small, depth multiplier of 1.0. """ """ MNASNet Small, depth multiplier of 1.0. """
default_cfg = default_cfgs['mnasnet_small'] default_cfg = default_cfgs['mnasnet_small']
@ -1283,6 +1292,7 @@ def mnasnet_small(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def mobilenetv1_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def mobilenetv1_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MobileNet V1 """ """ MobileNet V1 """
default_cfg = default_cfgs['mobilenetv1_100'] default_cfg = default_cfgs['mobilenetv1_100']
@ -1293,6 +1303,7 @@ def mobilenetv1_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def mobilenetv2_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def mobilenetv2_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MobileNet V2 """ """ MobileNet V2 """
default_cfg = default_cfgs['mobilenetv2_100'] default_cfg = default_cfgs['mobilenetv2_100']
@ -1303,6 +1314,7 @@ def mobilenetv2_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def mobilenetv3_050(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def mobilenetv3_050(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MobileNet V3 """ """ MobileNet V3 """
default_cfg = default_cfgs['mobilenetv3_050'] default_cfg = default_cfgs['mobilenetv3_050']
@ -1313,6 +1325,7 @@ def mobilenetv3_050(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def mobilenetv3_075(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def mobilenetv3_075(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MobileNet V3 """ """ MobileNet V3 """
default_cfg = default_cfgs['mobilenetv3_075'] default_cfg = default_cfgs['mobilenetv3_075']
@ -1323,6 +1336,7 @@ def mobilenetv3_075(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def mobilenetv3_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def mobilenetv3_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" MobileNet V3 """ """ MobileNet V3 """
default_cfg = default_cfgs['mobilenetv3_100'] default_cfg = default_cfgs['mobilenetv3_100']
@ -1336,6 +1350,7 @@ def mobilenetv3_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def fbnetc_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def fbnetc_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" FBNet-C """ """ FBNet-C """
default_cfg = default_cfgs['fbnetc_100'] default_cfg = default_cfgs['fbnetc_100']
@ -1349,6 +1364,7 @@ def fbnetc_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def chamnetv1_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def chamnetv1_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" ChamNet """ """ ChamNet """
default_cfg = default_cfgs['chamnetv1_100'] default_cfg = default_cfgs['chamnetv1_100']
@ -1359,6 +1375,7 @@ def chamnetv1_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def chamnetv2_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def chamnetv2_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" ChamNet """ """ ChamNet """
default_cfg = default_cfgs['chamnetv2_100'] default_cfg = default_cfgs['chamnetv2_100']
@ -1369,6 +1386,7 @@ def chamnetv2_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def spnasnet_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def spnasnet_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" Single-Path NAS Pixel1""" """ Single-Path NAS Pixel1"""
default_cfg = default_cfgs['spnasnet_100'] default_cfg = default_cfgs['spnasnet_100']
@ -1379,6 +1397,7 @@ def spnasnet_100(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def efficientnet_b0(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def efficientnet_b0(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" EfficientNet-B0 """ """ EfficientNet-B0 """
default_cfg = default_cfgs['efficientnet_b0'] default_cfg = default_cfgs['efficientnet_b0']
@ -1392,6 +1411,7 @@ def efficientnet_b0(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def efficientnet_b1(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def efficientnet_b1(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" EfficientNet-B1 """ """ EfficientNet-B1 """
default_cfg = default_cfgs['efficientnet_b1'] default_cfg = default_cfgs['efficientnet_b1']
@ -1405,6 +1425,7 @@ def efficientnet_b1(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def efficientnet_b2(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def efficientnet_b2(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" EfficientNet-B2 """ """ EfficientNet-B2 """
default_cfg = default_cfgs['efficientnet_b2'] default_cfg = default_cfgs['efficientnet_b2']
@ -1418,6 +1439,7 @@ def efficientnet_b2(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def efficientnet_b3(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def efficientnet_b3(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" EfficientNet-B3 """ """ EfficientNet-B3 """
default_cfg = default_cfgs['efficientnet_b3'] default_cfg = default_cfgs['efficientnet_b3']
@ -1431,6 +1453,7 @@ def efficientnet_b3(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def efficientnet_b4(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def efficientnet_b4(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" EfficientNet-B4 """ """ EfficientNet-B4 """
default_cfg = default_cfgs['efficientnet_b4'] default_cfg = default_cfgs['efficientnet_b4']
@ -1444,6 +1467,7 @@ def efficientnet_b4(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def efficientnet_b5(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def efficientnet_b5(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" EfficientNet-B5 """ """ EfficientNet-B5 """
# NOTE for train, drop_rate should be 0.4 # NOTE for train, drop_rate should be 0.4
@ -1457,6 +1481,7 @@ def efficientnet_b5(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def tf_efficientnet_b0(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def tf_efficientnet_b0(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" EfficientNet-B0. Tensorflow compatible variant """ """ EfficientNet-B0. Tensorflow compatible variant """
default_cfg = default_cfgs['tf_efficientnet_b0'] default_cfg = default_cfgs['tf_efficientnet_b0']
@ -1471,6 +1496,7 @@ def tf_efficientnet_b0(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
return model return model
@register_model
def tf_efficientnet_b1(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def tf_efficientnet_b1(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" EfficientNet-B1. Tensorflow compatible variant """ """ EfficientNet-B1. Tensorflow compatible variant """
default_cfg = default_cfgs['tf_efficientnet_b1'] default_cfg = default_cfgs['tf_efficientnet_b1']
@ -1485,6 +1511,7 @@ def tf_efficientnet_b1(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
return model return model
@register_model
def tf_efficientnet_b2(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def tf_efficientnet_b2(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" EfficientNet-B2. Tensorflow compatible variant """ """ EfficientNet-B2. Tensorflow compatible variant """
default_cfg = default_cfgs['tf_efficientnet_b2'] default_cfg = default_cfgs['tf_efficientnet_b2']
@ -1499,6 +1526,7 @@ def tf_efficientnet_b2(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
return model return model
@register_model
def tf_efficientnet_b3(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def tf_efficientnet_b3(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" EfficientNet-B3. Tensorflow compatible variant """ """ EfficientNet-B3. Tensorflow compatible variant """
default_cfg = default_cfgs['tf_efficientnet_b3'] default_cfg = default_cfgs['tf_efficientnet_b3']
@ -1513,6 +1541,7 @@ def tf_efficientnet_b3(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
return model return model
@register_model
def tf_efficientnet_b4(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def tf_efficientnet_b4(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" EfficientNet-B4. Tensorflow compatible variant """ """ EfficientNet-B4. Tensorflow compatible variant """
default_cfg = default_cfgs['tf_efficientnet_b4'] default_cfg = default_cfgs['tf_efficientnet_b4']
@ -1527,6 +1556,7 @@ def tf_efficientnet_b4(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
return model return model
@register_model
def tf_efficientnet_b5(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def tf_efficientnet_b5(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
""" EfficientNet-B5. Tensorflow compatible variant """ """ EfficientNet-B5. Tensorflow compatible variant """
default_cfg = default_cfgs['tf_efficientnet_b5'] default_cfg = default_cfgs['tf_efficientnet_b5']

@ -3,21 +3,19 @@ This file evolved from https://github.com/pytorch/vision 'resnet.py' with (SE)-R
and ports of Gluon variations (https://github.com/dmlc/gluon-cv/blob/master/gluoncv/model_zoo/resnet.py) and ports of Gluon variations (https://github.com/dmlc/gluon-cv/blob/master/gluoncv/model_zoo/resnet.py)
by Ross Wightman by Ross Wightman
""" """
import math
import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import math
from .registry import register_model
from .helpers import load_pretrained from .helpers import load_pretrained
from .adaptive_avgmax_pool import SelectAdaptivePool2d from .adaptive_avgmax_pool import SelectAdaptivePool2d
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
_models = [
'gluon_resnet18_v1b', 'gluon_resnet34_v1b', 'gluon_resnet50_v1b', 'gluon_resnet101_v1b', 'gluon_resnet152_v1b', __all__ = ['GluonResNet']
'gluon_resnet50_v1c', 'gluon_resnet101_v1c', 'gluon_resnet152_v1c', 'gluon_resnet50_v1d', 'gluon_resnet101_v1d',
'gluon_resnet152_v1d', 'gluon_resnet50_v1e', 'gluon_resnet101_v1e', 'gluon_resnet152_v1e', 'gluon_resnet50_v1s',
'gluon_resnet101_v1s', 'gluon_resnet152_v1s', 'gluon_resnext50_32x4d', 'gluon_resnext101_32x4d',
'gluon_resnext101_64x4d', 'gluon_resnext152_32x4d', 'gluon_seresnext50_32x4d', 'gluon_seresnext101_32x4d',
'gluon_seresnext101_64x4d', 'gluon_seresnext152_32x4d', 'gluon_senet154']
__all__ = ['GluonResNet'] + _models
def _cfg(url='', **kwargs): def _cfg(url='', **kwargs):
@ -361,6 +359,7 @@ class GluonResNet(nn.Module):
return x return x
@register_model
def gluon_resnet18_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnet18_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-18 model. """Constructs a ResNet-18 model.
""" """
@ -372,6 +371,7 @@ def gluon_resnet18_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
return model return model
@register_model
def gluon_resnet34_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnet34_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-34 model. """Constructs a ResNet-34 model.
""" """
@ -383,6 +383,7 @@ def gluon_resnet34_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
return model return model
@register_model
def gluon_resnet50_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnet50_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-50 model. """Constructs a ResNet-50 model.
""" """
@ -394,6 +395,7 @@ def gluon_resnet50_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
return model return model
@register_model
def gluon_resnet101_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnet101_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-101 model. """Constructs a ResNet-101 model.
""" """
@ -405,6 +407,7 @@ def gluon_resnet101_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs
return model return model
@register_model
def gluon_resnet152_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnet152_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-152 model. """Constructs a ResNet-152 model.
""" """
@ -416,6 +419,7 @@ def gluon_resnet152_v1b(pretrained=False, num_classes=1000, in_chans=3, **kwargs
return model return model
@register_model
def gluon_resnet50_v1c(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnet50_v1c(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-50 model. """Constructs a ResNet-50 model.
""" """
@ -428,6 +432,7 @@ def gluon_resnet50_v1c(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
return model return model
@register_model
def gluon_resnet101_v1c(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnet101_v1c(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-101 model. """Constructs a ResNet-101 model.
""" """
@ -440,6 +445,7 @@ def gluon_resnet101_v1c(pretrained=False, num_classes=1000, in_chans=3, **kwargs
return model return model
@register_model
def gluon_resnet152_v1c(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnet152_v1c(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-152 model. """Constructs a ResNet-152 model.
""" """
@ -452,6 +458,7 @@ def gluon_resnet152_v1c(pretrained=False, num_classes=1000, in_chans=3, **kwargs
return model return model
@register_model
def gluon_resnet50_v1d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnet50_v1d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-50 model. """Constructs a ResNet-50 model.
""" """
@ -464,6 +471,7 @@ def gluon_resnet50_v1d(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
return model return model
@register_model
def gluon_resnet101_v1d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnet101_v1d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-101 model. """Constructs a ResNet-101 model.
""" """
@ -476,6 +484,7 @@ def gluon_resnet101_v1d(pretrained=False, num_classes=1000, in_chans=3, **kwargs
return model return model
@register_model
def gluon_resnet152_v1d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnet152_v1d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-152 model. """Constructs a ResNet-152 model.
""" """
@ -488,6 +497,7 @@ def gluon_resnet152_v1d(pretrained=False, num_classes=1000, in_chans=3, **kwargs
return model return model
@register_model
def gluon_resnet50_v1e(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnet50_v1e(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-50-V1e model. No pretrained weights for any 'e' variants """Constructs a ResNet-50-V1e model. No pretrained weights for any 'e' variants
""" """
@ -500,6 +510,7 @@ def gluon_resnet50_v1e(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
return model return model
@register_model
def gluon_resnet101_v1e(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnet101_v1e(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-101 model. """Constructs a ResNet-101 model.
""" """
@ -512,6 +523,7 @@ def gluon_resnet101_v1e(pretrained=False, num_classes=1000, in_chans=3, **kwargs
return model return model
@register_model
def gluon_resnet152_v1e(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnet152_v1e(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-152 model. """Constructs a ResNet-152 model.
""" """
@ -524,6 +536,7 @@ def gluon_resnet152_v1e(pretrained=False, num_classes=1000, in_chans=3, **kwargs
return model return model
@register_model
def gluon_resnet50_v1s(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnet50_v1s(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-50 model. """Constructs a ResNet-50 model.
""" """
@ -536,6 +549,7 @@ def gluon_resnet50_v1s(pretrained=False, num_classes=1000, in_chans=3, **kwargs)
return model return model
@register_model
def gluon_resnet101_v1s(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnet101_v1s(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-101 model. """Constructs a ResNet-101 model.
""" """
@ -548,6 +562,7 @@ def gluon_resnet101_v1s(pretrained=False, num_classes=1000, in_chans=3, **kwargs
return model return model
@register_model
def gluon_resnet152_v1s(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnet152_v1s(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-152 model. """Constructs a ResNet-152 model.
""" """
@ -560,6 +575,7 @@ def gluon_resnet152_v1s(pretrained=False, num_classes=1000, in_chans=3, **kwargs
return model return model
@register_model
def gluon_resnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNeXt50-32x4d model. """Constructs a ResNeXt50-32x4d model.
""" """
@ -573,6 +589,7 @@ def gluon_resnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwar
return model return model
@register_model
def gluon_resnext101_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnext101_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNeXt-101 model. """Constructs a ResNeXt-101 model.
""" """
@ -586,6 +603,7 @@ def gluon_resnext101_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwa
return model return model
@register_model
def gluon_resnext101_64x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnext101_64x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNeXt-101 model. """Constructs a ResNeXt-101 model.
""" """
@ -599,6 +617,7 @@ def gluon_resnext101_64x4d(pretrained=False, num_classes=1000, in_chans=3, **kwa
return model return model
@register_model
def gluon_resnext152_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_resnext152_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNeXt152-32x4d model. """Constructs a ResNeXt152-32x4d model.
""" """
@ -612,6 +631,7 @@ def gluon_resnext152_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwa
return model return model
@register_model
def gluon_seresnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_seresnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a SEResNeXt50-32x4d model. """Constructs a SEResNeXt50-32x4d model.
""" """
@ -625,6 +645,7 @@ def gluon_seresnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kw
return model return model
@register_model
def gluon_seresnext101_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_seresnext101_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a SEResNeXt-101-32x4d model. """Constructs a SEResNeXt-101-32x4d model.
""" """
@ -638,6 +659,7 @@ def gluon_seresnext101_32x4d(pretrained=False, num_classes=1000, in_chans=3, **k
return model return model
@register_model
def gluon_seresnext101_64x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_seresnext101_64x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a SEResNeXt-101-64x4d model. """Constructs a SEResNeXt-101-64x4d model.
""" """
@ -651,6 +673,7 @@ def gluon_seresnext101_64x4d(pretrained=False, num_classes=1000, in_chans=3, **k
return model return model
@register_model
def gluon_seresnext152_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_seresnext152_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a SEResNeXt152-32x4d model. """Constructs a SEResNeXt152-32x4d model.
""" """
@ -664,6 +687,7 @@ def gluon_seresnext152_32x4d(pretrained=False, num_classes=1000, in_chans=3, **k
return model return model
@register_model
def gluon_senet154(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_senet154(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs an SENet-154 model. """Constructs an SENet-154 model.
""" """

@ -2,12 +2,16 @@
Sourced from https://github.com/Cadene/tensorflow-model-zoo.torch (MIT License) which is Sourced from https://github.com/Cadene/tensorflow-model-zoo.torch (MIT License) which is
based upon Google's Tensorflow implementation and pretrained weights (Apache 2.0 License) based upon Google's Tensorflow implementation and pretrained weights (Apache 2.0 License)
""" """
import torch
import torch.nn as nn
import torch.nn.functional as F
from .registry import register_model
from .helpers import load_pretrained from .helpers import load_pretrained
from .adaptive_avgmax_pool import * from .adaptive_avgmax_pool import select_adaptive_pool2d
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
_models = ['inception_resnet_v2', 'ens_adv_inception_resnet_v2'] __all__ = ['InceptionResnetV2']
__all__ = ['InceptionResnetV2'] + _models
default_cfgs = { default_cfgs = {
# ported from http://download.tensorflow.org/models/inception_resnet_v2_2016_08_30.tar.gz # ported from http://download.tensorflow.org/models/inception_resnet_v2_2016_08_30.tar.gz
@ -328,6 +332,7 @@ class InceptionResnetV2(nn.Module):
return x return x
@register_model
def inception_resnet_v2(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def inception_resnet_v2(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
r"""InceptionResnetV2 model architecture from the r"""InceptionResnetV2 model architecture from the
`"InceptionV4, Inception-ResNet..." <https://arxiv.org/abs/1602.07261>` paper. `"InceptionV4, Inception-ResNet..." <https://arxiv.org/abs/1602.07261>` paper.
@ -341,6 +346,7 @@ def inception_resnet_v2(pretrained=False, num_classes=1000, in_chans=3, **kwargs
return model return model
@register_model
def ens_adv_inception_resnet_v2(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def ens_adv_inception_resnet_v2(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
r""" Ensemble Adversarially trained InceptionResnetV2 model architecture r""" Ensemble Adversarially trained InceptionResnetV2 model architecture
As per https://arxiv.org/abs/1705.07204 and As per https://arxiv.org/abs/1705.07204 and

@ -1,9 +1,9 @@
from torchvision.models import Inception3 from torchvision.models import Inception3
from .registry import register_model
from .helpers import load_pretrained from .helpers import load_pretrained
from timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD from timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
_models = ['inception_v3', 'tf_inception_v3', 'adv_inception_v3', 'gluon_inception_v3'] __all__ = []
__all__ = _models
default_cfgs = { default_cfgs = {
# original PyTorch weights, ported from Tensorflow but modified # original PyTorch weights, ported from Tensorflow but modified
@ -66,6 +66,7 @@ def _assert_default_kwargs(kwargs):
assert kwargs.pop('drop_rate', 0.) == 0. assert kwargs.pop('drop_rate', 0.) == 0.
@register_model
def inception_v3(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def inception_v3(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
# original PyTorch weights, ported from Tensorflow but modified # original PyTorch weights, ported from Tensorflow but modified
default_cfg = default_cfgs['inception_v3'] default_cfg = default_cfgs['inception_v3']
@ -78,6 +79,7 @@ def inception_v3(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def tf_inception_v3(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def tf_inception_v3(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
# my port of Tensorflow SLIM weights (http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz) # my port of Tensorflow SLIM weights (http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz)
default_cfg = default_cfgs['tf_inception_v3'] default_cfg = default_cfgs['tf_inception_v3']
@ -90,6 +92,7 @@ def tf_inception_v3(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def adv_inception_v3(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def adv_inception_v3(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
# my port of Tensorflow adversarially trained Inception V3 from # my port of Tensorflow adversarially trained Inception V3 from
# http://download.tensorflow.org/models/adv_inception_v3_2017_08_18.tar.gz # http://download.tensorflow.org/models/adv_inception_v3_2017_08_18.tar.gz
@ -103,6 +106,7 @@ def adv_inception_v3(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def gluon_inception_v3(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def gluon_inception_v3(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
# from gluon pretrained models, best performing in terms of accuracy/loss metrics # from gluon pretrained models, best performing in terms of accuracy/loss metrics
# https://gluon-cv.mxnet.io/model_zoo/classification.html # https://gluon-cv.mxnet.io/model_zoo/classification.html

@ -2,12 +2,16 @@
Sourced from https://github.com/Cadene/tensorflow-model-zoo.torch (MIT License) which is Sourced from https://github.com/Cadene/tensorflow-model-zoo.torch (MIT License) which is
based upon Google's Tensorflow implementation and pretrained weights (Apache 2.0 License) based upon Google's Tensorflow implementation and pretrained weights (Apache 2.0 License)
""" """
import torch
import torch.nn as nn
import torch.nn.functional as F
from .registry import register_model
from .helpers import load_pretrained from .helpers import load_pretrained
from .adaptive_avgmax_pool import * from .adaptive_avgmax_pool import select_adaptive_pool2d
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
_models = ['inception_v4'] __all__ = ['InceptionV4']
__all__ = ['InceptionV4'] + _models
default_cfgs = { default_cfgs = {
'inception_v4': { 'inception_v4': {
@ -293,6 +297,7 @@ class InceptionV4(nn.Module):
return x return x
@register_model
def inception_v4(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def inception_v4(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['inception_v4'] default_cfg = default_cfgs['inception_v4']
model = InceptionV4(num_classes=num_classes, in_chans=in_chans, **kwargs) model = InceptionV4(num_classes=num_classes, in_chans=in_chans, **kwargs)

@ -1,42 +0,0 @@
from .inception_v4 import *
from .inception_resnet_v2 import *
from .densenet import *
from .resnet import *
from .dpn import *
from .senet import *
from .xception import *
from .pnasnet import *
from .gen_efficientnet import *
from .inception_v3 import *
from .gluon_resnet import *
from .helpers import load_checkpoint
def create_model(
model_name,
pretrained=False,
num_classes=1000,
in_chans=3,
checkpoint_path='',
**kwargs):
margs = dict(pretrained=pretrained, num_classes=num_classes, in_chans=in_chans)
# Not all models have support for batchnorm params passed as args, only gen_efficientnet variants
supports_bn_params = model_name in gen_efficientnet_model_names()
if not supports_bn_params and any([x in kwargs for x in ['bn_tf', 'bn_momentum', 'bn_eps']]):
kwargs.pop('bn_tf', None)
kwargs.pop('bn_momentum', None)
kwargs.pop('bn_eps', None)
if model_name in globals():
create_fn = globals()[model_name]
model = create_fn(**margs, **kwargs)
else:
raise RuntimeError('Unknown model (%s)' % model_name)
if checkpoint_path:
load_checkpoint(model, checkpoint_path)
return model

@ -12,11 +12,11 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from .registry import register_model
from .helpers import load_pretrained from .helpers import load_pretrained
from .adaptive_avgmax_pool import SelectAdaptivePool2d from .adaptive_avgmax_pool import SelectAdaptivePool2d
_models = ['pnasnet5large'] __all__ = ['PNASNet5Large']
__all__ = ['PNASNet5Large'] + _models
default_cfgs = { default_cfgs = {
'pnasnet5large': { 'pnasnet5large': {
@ -385,6 +385,7 @@ class PNASNet5Large(nn.Module):
return x return x
@register_model
def pnasnet5large(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def pnasnet5large(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
r"""PNASNet-5 model architecture from the r"""PNASNet-5 model architecture from the
`"Progressive Neural Architecture Search" `"Progressive Neural Architecture Search"

@ -0,0 +1,78 @@
import sys
import re
import fnmatch
from collections import defaultdict
__all__ = ['list_models', 'is_model', 'model_entrypoint', 'list_modules', 'is_model_in_modules']
_module_to_models = defaultdict(set)
_model_to_module = {}
_model_entrypoints = {}
def register_model(fn):
mod = sys.modules[fn.__module__]
module_name_split = fn.__module__.split('.')
module_name = module_name_split[-1] if len(module_name_split) else ''
if hasattr(mod, '__all__'):
mod.__all__.append(fn.__name__)
else:
mod.__all__ = [fn.__name__]
_model_entrypoints[fn.__name__] = fn
_model_to_module[fn.__name__] = module_name
_module_to_models[module_name].add(fn.__name__)
return fn
def _natural_key(string_):
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
def list_models(filter='', module=''):
""" Return list of available model names, sorted alphabetically
Args:
filter (str) - Wildcard filter string that works with fnmatch
module (str) - Limit model selection to a specific sub-module (ie 'gen_efficientnet')
Example:
model_list('gluon_resnet*') -- returns all models starting with 'gluon_resnet'
model_list('*resnext*, 'resnet') -- returns all models with 'resnext' in 'resnet' module
"""
if module:
models = list(_module_to_models[module])
else:
models = _model_entrypoints.keys()
if filter:
models = fnmatch.filter(models, filter)
return list(sorted(models, key=_natural_key))
def is_model(model_name):
""" Check if a model name exists
"""
return model_name in _model_entrypoints
def model_entrypoint(model_name):
"""Fetch a model entrypoint for specified model name
"""
return _model_entrypoints[model_name]
def list_modules():
""" Return list of module names that contain models / model entrypoints
"""
modules = _module_to_models.keys()
return list(sorted(modules))
def is_model_in_modules(model_name, module_names):
"""Check if a model exists within a subset of modules
Args:
model_name (str) - name of model to check
module_names (tuple, list, set) - names of modules to search in
"""
assert isinstance(module_names, (tuple, list, set))
return any(model_name in _module_to_models[n] for n in module_names)

@ -4,17 +4,18 @@ additional dropout and dynamic global avg/max pool.
ResNext additions added by Ross Wightman ResNext additions added by Ross Wightman
""" """
import math
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import math
from .registry import register_model
from .helpers import load_pretrained from .helpers import load_pretrained
from .adaptive_avgmax_pool import SelectAdaptivePool2d from .adaptive_avgmax_pool import SelectAdaptivePool2d
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
_models = ['resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152',
'resnext50_32x4d', 'resnext101_32x4d', 'resnext101_64x4d', 'resnext152_32x4d', __all__ = ['ResNet'] # model_registry will add each entrypoint fn to this
'ig_resnext101_32x8d', 'ig_resnext101_32x16d', 'ig_resnext101_32x32d', 'ig_resnext101_32x48d']
__all__ = ['ResNet'] + _models
def _cfg(url='', **kwargs): def _cfg(url='', **kwargs):
@ -224,6 +225,7 @@ class ResNet(nn.Module):
return x return x
@register_model
def resnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def resnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-18 model. """Constructs a ResNet-18 model.
""" """
@ -235,6 +237,7 @@ def resnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def resnet34(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def resnet34(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-34 model. """Constructs a ResNet-34 model.
""" """
@ -246,6 +249,7 @@ def resnet34(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def resnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def resnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-50 model. """Constructs a ResNet-50 model.
""" """
@ -257,6 +261,7 @@ def resnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def resnet101(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def resnet101(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-101 model. """Constructs a ResNet-101 model.
""" """
@ -268,6 +273,7 @@ def resnet101(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def resnet152(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def resnet152(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNet-152 model. """Constructs a ResNet-152 model.
""" """
@ -279,6 +285,7 @@ def resnet152(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def resnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def resnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNeXt50-32x4d model. """Constructs a ResNeXt50-32x4d model.
""" """
@ -292,6 +299,7 @@ def resnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def resnext101_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def resnext101_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNeXt-101 model. """Constructs a ResNeXt-101 model.
""" """
@ -305,6 +313,7 @@ def resnext101_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def resnext101_64x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def resnext101_64x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNeXt101-64x4d model. """Constructs a ResNeXt101-64x4d model.
""" """
@ -318,6 +327,7 @@ def resnext101_64x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def resnext152_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def resnext152_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNeXt152-32x4d model. """Constructs a ResNeXt152-32x4d model.
""" """
@ -331,6 +341,7 @@ def resnext152_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def ig_resnext101_32x8d(pretrained=True, num_classes=1000, in_chans=3, **kwargs): def ig_resnext101_32x8d(pretrained=True, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNeXt-101 32x8 model pre-trained on weakly-supervised data """Constructs a ResNeXt-101 32x8 model pre-trained on weakly-supervised data
and finetuned on ImageNet from Figure 5 in and finetuned on ImageNet from Figure 5 in
@ -349,6 +360,7 @@ def ig_resnext101_32x8d(pretrained=True, num_classes=1000, in_chans=3, **kwargs)
return model return model
@register_model
def ig_resnext101_32x16d(pretrained=True, num_classes=1000, in_chans=3, **kwargs): def ig_resnext101_32x16d(pretrained=True, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNeXt-101 32x16 model pre-trained on weakly-supervised data """Constructs a ResNeXt-101 32x16 model pre-trained on weakly-supervised data
and finetuned on ImageNet from Figure 5 in and finetuned on ImageNet from Figure 5 in
@ -367,6 +379,7 @@ def ig_resnext101_32x16d(pretrained=True, num_classes=1000, in_chans=3, **kwargs
return model return model
@register_model
def ig_resnext101_32x32d(pretrained=True, num_classes=1000, in_chans=3, **kwargs): def ig_resnext101_32x32d(pretrained=True, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNeXt-101 32x32 model pre-trained on weakly-supervised data """Constructs a ResNeXt-101 32x32 model pre-trained on weakly-supervised data
and finetuned on ImageNet from Figure 5 in and finetuned on ImageNet from Figure 5 in
@ -385,6 +398,7 @@ def ig_resnext101_32x32d(pretrained=True, num_classes=1000, in_chans=3, **kwargs
return model return model
@register_model
def ig_resnext101_32x48d(pretrained=True, num_classes=1000, in_chans=3, **kwargs): def ig_resnext101_32x48d(pretrained=True, num_classes=1000, in_chans=3, **kwargs):
"""Constructs a ResNeXt-101 32x48 model pre-trained on weakly-supervised data """Constructs a ResNeXt-101 32x48 model pre-trained on weakly-supervised data
and finetuned on ImageNet from Figure 5 in and finetuned on ImageNet from Figure 5 in

@ -8,20 +8,18 @@ Original model: https://github.com/hujie-frank/SENet
ResNet code gently borrowed from ResNet code gently borrowed from
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
""" """
from __future__ import print_function, division, absolute_import
from collections import OrderedDict from collections import OrderedDict
import math import math
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from .registry import register_model
from .helpers import load_pretrained from .helpers import load_pretrained
from .adaptive_avgmax_pool import SelectAdaptivePool2d from .adaptive_avgmax_pool import SelectAdaptivePool2d
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
_models = ['seresnet18', 'seresnet34', 'seresnet50', 'seresnet101', 'seresnet152', 'senet154', __all__ = ['SENet']
'seresnext26_32x4d', 'seresnext50_32x4d', 'seresnext101_32x4d']
__all__ = ['SENet'] + _models
def _cfg(url='', **kwargs): def _cfg(url='', **kwargs):
@ -400,6 +398,7 @@ class SENet(nn.Module):
return x return x
@register_model
def seresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def seresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['seresnet18'] default_cfg = default_cfgs['seresnet18']
model = SENet(SEResNetBlock, [2, 2, 2, 2], groups=1, reduction=16, model = SENet(SEResNetBlock, [2, 2, 2, 2], groups=1, reduction=16,
@ -412,6 +411,7 @@ def seresnet18(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def seresnet34(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def seresnet34(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['seresnet34'] default_cfg = default_cfgs['seresnet34']
model = SENet(SEResNetBlock, [3, 4, 6, 3], groups=1, reduction=16, model = SENet(SEResNetBlock, [3, 4, 6, 3], groups=1, reduction=16,
@ -424,6 +424,7 @@ def seresnet34(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def seresnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def seresnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['seresnet50'] default_cfg = default_cfgs['seresnet50']
model = SENet(SEResNetBottleneck, [3, 4, 6, 3], groups=1, reduction=16, model = SENet(SEResNetBottleneck, [3, 4, 6, 3], groups=1, reduction=16,
@ -436,6 +437,7 @@ def seresnet50(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def seresnet101(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def seresnet101(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['seresnet101'] default_cfg = default_cfgs['seresnet101']
model = SENet(SEResNetBottleneck, [3, 4, 23, 3], groups=1, reduction=16, model = SENet(SEResNetBottleneck, [3, 4, 23, 3], groups=1, reduction=16,
@ -448,6 +450,7 @@ def seresnet101(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def seresnet152(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def seresnet152(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['seresnet152'] default_cfg = default_cfgs['seresnet152']
model = SENet(SEResNetBottleneck, [3, 8, 36, 3], groups=1, reduction=16, model = SENet(SEResNetBottleneck, [3, 8, 36, 3], groups=1, reduction=16,
@ -460,6 +463,7 @@ def seresnet152(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def senet154(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def senet154(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['senet154'] default_cfg = default_cfgs['senet154']
model = SENet(SEBottleneck, [3, 8, 36, 3], groups=64, reduction=16, model = SENet(SEBottleneck, [3, 8, 36, 3], groups=64, reduction=16,
@ -470,6 +474,7 @@ def senet154(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def seresnext26_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def seresnext26_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['seresnext26_32x4d'] default_cfg = default_cfgs['seresnext26_32x4d']
model = SENet(SEResNeXtBottleneck, [2, 2, 2, 2], groups=32, reduction=16, model = SENet(SEResNeXtBottleneck, [2, 2, 2, 2], groups=32, reduction=16,
@ -482,6 +487,7 @@ def seresnext26_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def seresnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def seresnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['seresnext50_32x4d'] default_cfg = default_cfgs['seresnext50_32x4d']
model = SENet(SEResNeXtBottleneck, [3, 4, 6, 3], groups=32, reduction=16, model = SENet(SEResNeXtBottleneck, [3, 4, 6, 3], groups=32, reduction=16,
@ -494,6 +500,7 @@ def seresnext50_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
return model return model
@register_model
def seresnext101_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def seresnext101_32x4d(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['seresnext101_32x4d'] default_cfg = default_cfgs['seresnext101_32x4d']
model = SENet(SEResNeXtBottleneck, [3, 4, 23, 3], groups=32, reduction=16, model = SENet(SEResNeXtBottleneck, [3, 4, 23, 3], groups=32, reduction=16,

@ -21,17 +21,17 @@ normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299 The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299
""" """
from __future__ import print_function, division, absolute_import
import math import math
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from .registry import register_model
from .helpers import load_pretrained from .helpers import load_pretrained
from .adaptive_avgmax_pool import select_adaptive_pool2d from .adaptive_avgmax_pool import select_adaptive_pool2d
_models = ['xception'] __all__ = ['Xception']
__all__ = ['Xception'] + _models
default_cfgs = { default_cfgs = {
'xception': { 'xception': {
@ -228,6 +228,7 @@ class Xception(nn.Module):
return x return x
@register_model
def xception(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def xception(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
default_cfg = default_cfgs['xception'] default_cfg = default_cfgs['xception']
model = Xception(num_classes=num_classes, in_chans=in_chans, **kwargs) model = Xception(num_classes=num_classes, in_chans=in_chans, **kwargs)

@ -13,7 +13,7 @@ import torch.nn as nn
import torch.nn.parallel import torch.nn.parallel
from collections import OrderedDict from collections import OrderedDict
from timm.models import create_model, apply_test_time_pool, load_checkpoint from timm.models import create_model, apply_test_time_pool, load_checkpoint, is_model, list_models
from timm.data import Dataset, create_loader, resolve_data_config from timm.data import Dataset, create_loader, resolve_data_config
from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging
@ -144,22 +144,26 @@ def validate(args):
def main(): def main():
setup_default_logging() setup_default_logging()
args = parser.parse_args() args = parser.parse_args()
if args.model == 'all': model_cfgs = []
# validate all models in a list of names with pretrained checkpoints model_names = []
args.pretrained = True if os.path.isdir(args.checkpoint):
# FIXME just an example list, need to add model name collections for
# batch testing of various pretrained combinations by arg string
models = ['tf_efficientnet_b0', 'tf_efficientnet_b1', 'tf_efficientnet_b2', 'tf_efficientnet_b3']
model_cfgs = [(n, '') for n in models]
elif os.path.isdir(args.checkpoint):
# validate all checkpoints in a path with same model # validate all checkpoints in a path with same model
checkpoints = glob.glob(args.checkpoint + '/*.pth.tar') checkpoints = glob.glob(args.checkpoint + '/*.pth.tar')
checkpoints += glob.glob(args.checkpoint + '/*.pth') checkpoints += glob.glob(args.checkpoint + '/*.pth')
model_cfgs = [(args.model, c) for c in sorted(checkpoints, key=natural_key)] model_cfgs = [(args.model, c) for c in sorted(checkpoints, key=natural_key)]
else: else:
model_cfgs = [] if args.model == 'all':
# validate all models in a list of names with pretrained checkpoints
args.pretrained = True
model_names = list_models()
model_cfgs = [(n, '') for n in model_names]
elif not is_model(args.model):
# model name doesn't exist, try as wildcard filter
model_names = list_models(args.model)
model_cfgs = [(n, '') for n in model_names]
if len(model_cfgs): if len(model_cfgs):
print('Running bulk validation on these pretrained models:', ', '.join(model_names))
header_written = False header_written = False
with open('./results-all.csv', mode='w') as cf: with open('./results-all.csv', mode='w') as cf:
for m, c in model_cfgs: for m, c in model_cfgs:

Loading…
Cancel
Save