Resnext added, changes to bring it and seresnet in line with rest of models

pull/1/head
Ross Wightman 6 years ago
parent e0cfeb7d8e
commit 1577c52976

@ -11,7 +11,7 @@ from .resnet import resnet18, resnet34, resnet50, resnet101, resnet152
from .fbresnet200 import fbresnet200
from .dpn import dpn68, dpn68b, dpn92, dpn98, dpn131, dpn107
from .senet import seresnet18, seresnet34, seresnet50, seresnet101, seresnet152, \
seresnext50_32x4d, seresnext101_32x4d
seresnext26_32x4d, seresnext50_32x4d, seresnext101_32x4d
from .resnext import resnext50, resnext101, resnext152
@ -112,6 +112,8 @@ def create_model(
model = seresnet101(num_classes=num_classes, pretrained=pretrained, **kwargs)
elif model_name == 'seresnet152':
model = seresnet152(num_classes=num_classes, pretrained=pretrained, **kwargs)
elif model_name == 'seresnext26_32x4d':
model = seresnext26_32x4d(num_classes=num_classes, pretrained=pretrained, **kwargs)
elif model_name == 'seresnext50_32x4d':
model = seresnext50_32x4d(num_classes=num_classes, pretrained=pretrained, **kwargs)
elif model_name == 'seresnext101_32x4d':

@ -0,0 +1,194 @@
import torch.nn as nn
import torch.nn.functional as F
import math
import torch.utils.model_zoo as model_zoo
from models.adaptive_avgmax_pool import AdaptiveAvgMaxPool2d
__all__ = ['ResNeXt', 'resnext50', 'resnext101', 'resnext152']
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
class ResNeXtBottleneckC(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=32, base_width=4):
super(ResNeXtBottleneckC, self).__init__()
width = math.floor(planes / 64 * cardinality * base_width)
self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(width)
self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride,
padding=1, bias=False, groups=cardinality)
self.bn2 = nn.BatchNorm2d(width)
self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNeXt(nn.Module):
def __init__(self, block, layers, num_classes=1000, cardinality=32, base_width=4, shortcut='C',
drop_rate=0., global_pool='avg'):
self.num_classes = num_classes
self.inplanes = 64
self.cardinality = cardinality
self.base_width = base_width
self.shortcut = shortcut
self.drop_rate = drop_rate
super(ResNeXt, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = AdaptiveAvgMaxPool2d(pool_type=global_pool)
self.num_features = 512 * block.expansion
self.fc = nn.Linear(self.num_features, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
reshape = stride != 1 or self.inplanes != planes * block.expansion
use_conv = (self.shortcut == 'C') or (self.shortcut == 'B' and reshape)
if use_conv:
downsample = nn.Sequential(
nn.Conv2d(
self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
elif reshape:
downsample = nn.AvgPool2d(3, stride=stride)
layers = [block(self.inplanes, planes, stride, downsample, self.cardinality, self.base_width)]
self.inplanes = planes * block.expansion
if self.shortcut == 'C':
shortcut = nn.Sequential(
nn.Conv2d(
self.inplanes, planes * block.expansion, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
else:
shortcut = None
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, 1, shortcut, self.cardinality, self.base_width))
return nn.Sequential(*layers)
def get_classifier(self):
return self.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.avgpool = AdaptiveAvgMaxPool2d(pool_type=global_pool)
self.num_classes = num_classes
del self.fc
if num_classes:
self.fc = nn.Linear(self.num_features, num_classes)
else:
self.fc = None
def forward_features(self, x, pool=True):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
if pool:
x = self.avgpool(x)
x = x.view(x.size(0), -1)
return x
def forward(self, x):
x = self.forward_features(x)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
x = self.fc(x)
return x
def resnext50(cardinality=32, base_width=4, shortcut='C', pretrained=False, **kwargs):
"""Constructs a ResNeXt-50 model.
Args:
cardinality (int): Cardinality of the aggregated transform
base_width (int): Base width of the grouped convolution
shortcut ('A'|'B'|'C'): 'B' use 1x1 conv to downsample, 'C' use 1x1 conv on every residual connection
"""
model = ResNeXt(
ResNeXtBottleneckC, [3, 4, 6, 3], cardinality=cardinality,
base_width=base_width, shortcut=shortcut, **kwargs)
return model
def resnext101(cardinality=32, base_width=4, shortcut='C', pretrained=False, **kwargs):
"""Constructs a ResNeXt-101 model.
Args:
cardinality (int): Cardinality of the aggregated transform
base_width (int): Base width of the grouped convolution
shortcut ('A'|'B'|'C'): 'B' use 1x1 conv to downsample, 'C' use 1x1 conv on every residual connection
"""
model = ResNeXt(
ResNeXtBottleneckC, [3, 4, 23, 3], cardinality=cardinality,
base_width=base_width, shortcut=shortcut, **kwargs)
return model
def resnext152(cardinality=32, base_width=4, shortcut='C', pretrained=False, **kwargs):
"""Constructs a ResNeXt-152 model.
Args:
cardinality (int): Cardinality of the aggregated transform
base_width (int): Base width of the grouped convolution
shortcut ('A'|'B'|'C'): 'B' use 1x1 conv to downsample, 'C' use 1x1 conv on every residual connection
"""
model = ResNeXt(
ResNeXtBottleneckC, [3, 8, 36, 3], cardinality=cardinality,
base_width=base_width, shortcut=shortcut, **kwargs)
return model

@ -7,7 +7,9 @@ from collections import OrderedDict
import math
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import model_zoo
from models.adaptive_avgmax_pool import AdaptiveAvgMaxPool2d
__all__ = ['SENet', 'senet154', 'seresnet50', 'seresnet101', 'seresnet152',
'seresnext50_32x4d', 'seresnext101_32x4d']
@ -193,9 +195,9 @@ class SEResNetBlock(nn.Module):
class SENet(nn.Module):
def __init__(self, block, layers, groups, reduction, dropout_p=0.2,
def __init__(self, block, layers, groups, reduction, drop_rate=0.2,
inchans=3, inplanes=128, input_3x3=True, downsample_kernel_size=3,
downsample_padding=1, num_classes=1000):
downsample_padding=1, num_classes=1000, global_pool='avg'):
"""
Parameters
----------
@ -304,8 +306,8 @@ class SENet(nn.Module):
downsample_kernel_size=downsample_kernel_size,
downsample_padding=downsample_padding
)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None
self.avg_pool = AdaptiveAvgMaxPool2d(pool_type=global_pool)
self.drop_rate = drop_rate
self.num_features = 512 * block.expansion
self.last_linear = nn.Linear(self.num_features, num_classes)
@ -354,8 +356,8 @@ class SENet(nn.Module):
return x
def logits(self, x):
if self.dropout is not None:
x = self.dropout(x)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
x = self.last_linear(x)
return x
@ -375,79 +377,89 @@ def _load_pretrained(model, url, inchans=3):
model.load_state_dict(state_dict)
def senet154(num_classes=1000, inchans=3, pretrained='imagenet'):
def senet154(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
model = SENet(SEBottleneck, [3, 8, 36, 3], groups=64, reduction=16,
dropout_p=0.2, num_classes=num_classes)
num_classes=num_classes, **kwargs)
if pretrained:
_load_pretrained(model, model_urls['senet154'], inchans)
return model
def seresnet18(num_classes=1000, inchans=3, pretrained='imagenet'):
def seresnet18(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
model = SENet(SEResNetBlock, [2, 2, 2, 2], groups=1, reduction=16,
dropout_p=None, inplanes=64, input_3x3=False,
inplanes=64, input_3x3=False,
downsample_kernel_size=1, downsample_padding=0,
num_classes=num_classes)
num_classes=num_classes, **kwargs)
if pretrained:
_load_pretrained(model, model_urls['seresnet18'], inchans)
return model
def seresnet34(num_classes=1000, inchans=3, pretrained='imagenet'):
def seresnet34(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
model = SENet(SEResNetBlock, [3, 4, 6, 3], groups=1, reduction=16,
dropout_p=None, inplanes=64, input_3x3=False,
inplanes=64, input_3x3=False,
downsample_kernel_size=1, downsample_padding=0,
num_classes=num_classes)
num_classes=num_classes, **kwargs)
if pretrained:
_load_pretrained(model, model_urls['seresnet34'], inchans)
return model
def seresnet50(num_classes=1000, inchans=3, pretrained='imagenet'):
def seresnet50(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
model = SENet(SEResNetBottleneck, [3, 4, 6, 3], groups=1, reduction=16,
dropout_p=None, inplanes=64, input_3x3=False,
inplanes=64, input_3x3=False,
downsample_kernel_size=1, downsample_padding=0,
num_classes=num_classes)
num_classes=num_classes, **kwargs)
if pretrained:
_load_pretrained(model, model_urls['seresnet50'], inchans)
return model
def seresnet101(num_classes=1000, inchans=3, pretrained='imagenet'):
def seresnet101(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
model = SENet(SEResNetBottleneck, [3, 4, 23, 3], groups=1, reduction=16,
dropout_p=None, inplanes=64, input_3x3=False,
inplanes=64, input_3x3=False,
downsample_kernel_size=1, downsample_padding=0,
num_classes=num_classes)
num_classes=num_classes, **kwargs)
if pretrained:
_load_pretrained(model, model_urls['seresnet101'], inchans)
return model
def seresnet152(num_classes=1000, inchans=3, pretrained='imagenet'):
def seresnet152(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
model = SENet(SEResNetBottleneck, [3, 8, 36, 3], groups=1, reduction=16,
dropout_p=None, inplanes=64, input_3x3=False,
inplanes=64, input_3x3=False,
downsample_kernel_size=1, downsample_padding=0,
num_classes=num_classes)
num_classes=num_classes, **kwargs)
if pretrained:
_load_pretrained(model, model_urls['seresnet152'], inchans)
return model
def seresnext50_32x4d(num_classes=1000, inchans=3, pretrained='imagenet'):
def seresnext26_32x4d(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
model = SENet(SEResNeXtBottleneck, [2, 2, 2, 2], groups=32, reduction=16,
inplanes=64, input_3x3=False,
downsample_kernel_size=1, downsample_padding=0,
num_classes=num_classes, **kwargs)
if pretrained:
_load_pretrained(model, model_urls['se_resnext26_32x4d'], inchans)
return model
def seresnext50_32x4d(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
model = SENet(SEResNeXtBottleneck, [3, 4, 6, 3], groups=32, reduction=16,
dropout_p=None, inplanes=64, input_3x3=False,
inplanes=64, input_3x3=False,
downsample_kernel_size=1, downsample_padding=0,
num_classes=num_classes)
num_classes=num_classes, **kwargs)
if pretrained:
_load_pretrained(model, model_urls['seresnext50_32x4d'], inchans)
return model
def seresnext101_32x4d(num_classes=1000, inchans=3, pretrained='imagenet'):
def seresnext101_32x4d(num_classes=1000, inchans=3, pretrained='imagenet', **kwargs):
model = SENet(SEResNeXtBottleneck, [3, 4, 23, 3], groups=32, reduction=16,
dropout_p=None, inplanes=64, input_3x3=False,
inplanes=64, input_3x3=False,
downsample_kernel_size=1, downsample_padding=0,
num_classes=num_classes)
num_classes=num_classes, **kwargs)
if pretrained:
_load_pretrained(model, model_urls['seresnext101_32x4d'], inchans)
return model

@ -24,6 +24,7 @@ class CosineLRScheduler(Scheduler):
warmup_t=0,
warmup_lr_init=0,
warmup_prefix=False,
cycle_limit=0,
t_in_epochs=True,
initialize=True) -> None:
super().__init__(optimizer, param_group_field="lr", initialize=initialize)
@ -37,6 +38,7 @@ class CosineLRScheduler(Scheduler):
self.t_mul = t_mul
self.lr_min = lr_min
self.decay_rate = decay_rate
self.cycle_limit = cycle_limit
self.warmup_t = warmup_t
self.warmup_lr_init = warmup_lr_init
self.warmup_prefix = warmup_prefix
@ -67,9 +69,13 @@ class CosineLRScheduler(Scheduler):
lr_min = self.lr_min * gamma
lr_max_values = [v * gamma for v in self.base_values]
if self.cycle_limit == 0 or (self.cycle_limit > 0 and i < self.cycle_limit):
lrs = [
lr_min + 0.5 * (lr_max - lr_min) * (1 + math.cos(math.pi * t_curr / t_i)) for lr_max in lr_max_values
]
else:
lrs = [self.lr_min for _ in self.base_values]
return lrs
def get_epoch_values(self, epoch: int):
@ -83,3 +89,12 @@ class CosineLRScheduler(Scheduler):
return self._get_lr(num_updates)
else:
return None
def get_cycle_length(self, cycles=0):
if not cycles:
cycles = self.cycle_limit
assert cycles > 0
if self.t_mul == 1.0:
return self.t_initial * cycles
else:
return int(math.floor(-self.t_initial * (self.t_mul ** cycles - 1) / (1 - self.t_mul)))

@ -97,3 +97,12 @@ class TanhLRScheduler(Scheduler):
return self._get_lr(num_updates)
else:
return None
def get_cycle_length(self, cycles=0):
if not cycles:
cycles = self.cycle_limit
assert cycles > 0
if self.t_mul == 1.0:
return self.t_initial * cycles
else:
return int(math.floor(-self.t_initial * (self.t_mul ** cycles - 1) / (1 - self.t_mul)))

@ -91,7 +91,6 @@ def main():
output_dir = get_outdir(output_base, 'train', exp_name)
batch_size = args.batch_size
num_epochs = args.epochs
torch.manual_seed(args.seed)
dataset_train = Dataset(
@ -155,9 +154,7 @@ def main():
else:
model.cuda()
train_loss_fn = validate_loss_fn = torch.nn.CrossEntropyLoss()
train_loss_fn = train_loss_fn.cuda()
validate_loss_fn = validate_loss_fn.cuda()
train_loss_fn = validate_loss_fn = torch.nn.CrossEntropyLoss().cuda()
if args.opt.lower() == 'sgd':
optimizer = optim.SGD(
@ -183,34 +180,39 @@ def main():
#if optimizer_state is not None:
# optimizer.load_state_dict(optimizer_state)
num_epochs = args.epochs
if args.sched == 'cosine':
lr_scheduler = scheduler.CosineLRScheduler(
optimizer,
t_initial=130,
t_mul=1.0,
lr_min=0,
t_initial=args.epochs,
t_mul=1.5,
lr_min=1e-5,
decay_rate=args.decay_rate,
warmup_lr_init=1e-4,
warmup_t=3,
cycle_limit=3,
t_in_epochs=True,
)
num_epochs = lr_scheduler.get_cycle_length() + 10
elif args.sched == 'tanh':
lr_scheduler = scheduler.TanhLRScheduler(
optimizer,
t_initial=130,
t_initial=args.epochs,
t_mul=1.0,
lr_min=1e-6,
lr_min=1e-5,
warmup_lr_init=.001,
warmup_t=3,
cycle_limit=1,
t_in_epochs=True,
)
num_epochs = lr_scheduler.get_cycle_length() + 10
else:
lr_scheduler = scheduler.StepLRScheduler(
optimizer,
decay_t=args.decay_epochs,
decay_rate=args.decay_rate,
)
print(num_epochs)
saver = CheckpointSaver(checkpoint_dir=output_dir)
best_loss = None

Loading…
Cancel
Save