Add custom grad tests, fix cut & paste error with hard_mish ME, add a few more pytorch act fns to factory
parent
6c7932fe75
commit
151679c2f1
@ -0,0 +1,71 @@
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import platform
|
||||
import os
|
||||
|
||||
from timm.models.layers import create_act_layer, get_act_layer, set_layer_config
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, act_layer="relu"):
|
||||
super(MLP, self).__init__()
|
||||
self.fc1 = nn.Linear(1000, 100)
|
||||
self.act = create_act_layer(act_layer, inplace=True)
|
||||
self.fc2 = nn.Linear(100, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
def _run_act_layer_grad(act_type):
|
||||
x = torch.rand(10, 1000) * 10
|
||||
m = MLP(act_layer=act_type)
|
||||
|
||||
def _run(x, act_layer=''):
|
||||
if act_layer:
|
||||
# replace act layer if set
|
||||
m.act = create_act_layer(act_layer, inplace=True)
|
||||
out = m(x)
|
||||
l = (out - 0).pow(2).sum()
|
||||
return l
|
||||
|
||||
out_me = _run(x)
|
||||
|
||||
with set_layer_config(scriptable=True):
|
||||
out_jit = _run(x, act_type)
|
||||
|
||||
assert torch.isclose(out_jit, out_me)
|
||||
|
||||
with set_layer_config(no_jit=True):
|
||||
out_basic = _run(x, act_type)
|
||||
|
||||
assert torch.isclose(out_basic, out_jit)
|
||||
|
||||
|
||||
def test_swish_grad():
|
||||
for _ in range(100):
|
||||
_run_act_layer_grad('swish')
|
||||
|
||||
|
||||
def test_mish_grad():
|
||||
for _ in range(100):
|
||||
_run_act_layer_grad('mish')
|
||||
|
||||
|
||||
def test_hard_sigmoid_grad():
|
||||
for _ in range(100):
|
||||
_run_act_layer_grad('hard_sigmoid')
|
||||
|
||||
|
||||
def test_hard_swish_grad():
|
||||
for _ in range(100):
|
||||
_run_act_layer_grad('hard_swish')
|
||||
|
||||
|
||||
def test_hard_mish_grad():
|
||||
for _ in range(100):
|
||||
_run_act_layer_grad('hard_mish')
|
Loading…
Reference in new issue