clip_laion2b models need 1e-5 eps for LayerNorm

pull/1476/head
Ross Wightman 2 years ago
parent 5dc4343308
commit 1199c5a1a4

@ -1216,7 +1216,8 @@ def vit_base_patch32_224_clip_laion2b(pretrained=False, **kwargs):
""" ViT-B/32 """ ViT-B/32
Pretrained weights from CLIP image tower trained on LAION-2B image-text pairs. Pretrained weights from CLIP image tower trained on LAION-2B image-text pairs.
""" """
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, **kwargs) model_kwargs = dict(
patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm, **kwargs)
model = _create_vision_transformer('vit_base_patch32_224_clip_laion2b', pretrained=pretrained, **model_kwargs) model = _create_vision_transformer('vit_base_patch32_224_clip_laion2b', pretrained=pretrained, **model_kwargs)
return model return model
@ -1226,7 +1227,8 @@ def vit_large_patch14_224_clip_laion2b(pretrained=False, **kwargs):
""" ViT-Large model (ViT-L/14) """ ViT-Large model (ViT-L/14)
Pretrained weights from CLIP image tower trained on LAION-2B image-text pairs. Pretrained weights from CLIP image tower trained on LAION-2B image-text pairs.
""" """
model_kwargs = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, pre_norm=True, **kwargs) model_kwargs = dict(
patch_size=14, embed_dim=1024, depth=24, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm, **kwargs)
model = _create_vision_transformer('vit_large_patch14_224_clip_laion2b', pretrained=pretrained, **model_kwargs) model = _create_vision_transformer('vit_large_patch14_224_clip_laion2b', pretrained=pretrained, **model_kwargs)
return model return model
@ -1236,7 +1238,8 @@ def vit_huge_patch14_224_clip_laion2b(pretrained=False, **kwargs):
""" ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929). """ ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
Pretrained weights from CLIP image tower trained on LAION-2B image-text pairs. Pretrained weights from CLIP image tower trained on LAION-2B image-text pairs.
""" """
model_kwargs = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, **kwargs) model_kwargs = dict(
patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm, **kwargs)
model = _create_vision_transformer('vit_huge_patch14_224_clip_laion2b', pretrained=pretrained, **model_kwargs) model = _create_vision_transformer('vit_huge_patch14_224_clip_laion2b', pretrained=pretrained, **model_kwargs)
return model return model
@ -1247,6 +1250,7 @@ def vit_giant_patch14_224_clip_laion2b(pretrained=False, **kwargs):
Pretrained weights from CLIP image tower trained on LAION-2B image-text pairs. Pretrained weights from CLIP image tower trained on LAION-2B image-text pairs.
""" """
model_kwargs = dict( model_kwargs = dict(
patch_size=14, embed_dim=1408, mlp_ratio=48/11, depth=40, num_heads=16, pre_norm=True, **kwargs) patch_size=14, embed_dim=1408, mlp_ratio=48/11, depth=40, num_heads=16,
pre_norm=True, norm_layer=nn.LayerNorm, **kwargs)
model = _create_vision_transformer('vit_giant_patch14_224_clip_laion2b', pretrained=pretrained, **model_kwargs) model = _create_vision_transformer('vit_giant_patch14_224_clip_laion2b', pretrained=pretrained, **model_kwargs)
return model return model

Loading…
Cancel
Save