Add non fused LAMB optimizer option

pull/801/head
Ross Wightman 3 years ago
parent 01cb46a9a5
commit 1042b8a146

@ -0,0 +1,204 @@
""" PyTorch Lamb optimizer w/ behaviour similar to NVIDIA FusedLamb
This optimizer code was adapted from the following (starting with latest)
* https://github.com/HabanaAI/Model-References/blob/2b435114fe8e31f159b1d3063b8280ae37af7423/PyTorch/nlp/bert/pretraining/lamb.py
* https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/lamb.py
* https://github.com/cybertronai/pytorch-lamb
Use FusedLamb if you can. The reason for including this variant of Lamb is to have a version that is
similar in behaviour to APEX FusedLamb if you aren't using NVIDIA GPUs or cannot install APEX for whatever reason.
Original copyrights for above sources are below.
"""
# Copyright (c) 2021, Habana Labs Ltd. All rights reserved.
# Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# MIT License
#
# Copyright (c) 2019 cybertronai
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch
from torch.optim import Optimizer
class NvLamb(Optimizer):
"""Implements a pure pytorch variant of FuseLAMB (NvLamb variant) optimizer from apex.optimizers.FusedLAMB
reference: https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/lamb.py
LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its norm. (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
grad_averaging (bool, optional): whether apply (1-beta2) to grad when
calculating running averages of gradient. (default: True)
set_grad_none (bool, optional): whether set grad to None when zero_grad()
method is called. (default: True)
max_grad_norm (float, optional): value used to clip global grad norm
(default: 1.0)
use_nvlamb (boolean, optional): Apply adaptive learning rate to 0.0
weight decay parameter (default: False)
.. _Large Batch Optimization for Deep Learning - Training BERT in 76 minutes:
https://arxiv.org/abs/1904.00962
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(self, params, lr=1e-3, bias_correction=True,
betas=(0.9, 0.999), eps=1e-6, weight_decay=0.01,
grad_averaging=True, set_grad_none=True,
max_grad_norm=1.0, use_nvlamb=False):
defaults = dict(lr=lr, bias_correction=bias_correction,
betas=betas, eps=eps, weight_decay=weight_decay,
grad_averaging=grad_averaging,
max_grad_norm=max_grad_norm)
super().__init__(params, defaults)
self.set_grad_none = set_grad_none
self.use_nvlamb = use_nvlamb
def zero_grad(self):
if self.set_grad_none:
for group in self.param_groups:
for p in group['params']:
p.grad = None
else:
super(NvLamb, self).zero_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
device = self.param_groups[0]["params"][0].device
loss = None
if closure is not None:
loss = closure()
global_grad_norm = torch.zeros(1, device=device)
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instad.')
global_grad_norm.add_(grad.pow(2).sum())
global_grad_norm_ = torch.sqrt(global_grad_norm)
max_grad_norm = self.defaults['max_grad_norm']
if global_grad_norm_ > max_grad_norm:
clip_global_grad_norm = global_grad_norm_ / max_grad_norm
else:
clip_global_grad_norm = 1.0
for group in self.param_groups:
bias_correction = 1 if group['bias_correction'] else 0
beta1, beta2 = group['betas']
grad_averaging = 1 if group['grad_averaging'] else 0
if grad_averaging:
beta3 = 1 - beta1
else:
beta3 = 1.0
# assume same step across group now to simplify things
# per parameter step can be easily support by making it tensor, or pass list into kernel
if 'step' in group:
group['step'] += 1
else:
group['step'] = 1
step_size = group['lr']
if bias_correction:
bias_correction1 = 1 - beta1 ** group['step']
bias_correction2 = 1 - beta2 ** group['step']
else:
bias_correction1, bias_correction2 = 1.0, 1.0
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.div_(clip_global_grad_norm)
state = self.state[p]
# State initialization
if len(state) == 0:
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg_, exp_avg_sq_ = state['exp_avg'], state['exp_avg_sq']
# Decay the first and second moment running average coefficient
# m_t
exp_avg_.mul_(beta1).add_(grad, alpha=beta3)
# v_t
exp_avg_sq_.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
# create clones to avoid modifying runner stats
exp_avg = exp_avg_.div(bias_correction1)
exp_avg_sq = exp_avg_sq_.div(bias_correction2)
# || w_t ||
weight_norm = p.data.norm(2.0)
# u_t
exp_avg_sq_sqrt = torch.sqrt(exp_avg_sq)
adam_step = exp_avg.div_(exp_avg_sq_sqrt.add_(group['eps']))
if group['weight_decay'] != 0:
adam_step.add_(p.data, alpha=group['weight_decay'])
# || u_t ||
adam_norm = adam_step.norm(2.0)
if (group['weight_decay'] != 0 or self.use_nvlamb) and adam_norm > 0 and weight_norm > 0:
trust_ratio = weight_norm / adam_norm
trust_ratio = trust_ratio.item()
else:
trust_ratio = 1
state['weight_norm'] = weight_norm
state['adam_norm'] = adam_norm
state['trust_ratio'] = trust_ratio
p.data.add_(adam_step, alpha=-step_size * trust_ratio)
return loss

@ -7,9 +7,11 @@ import torch
import torch.nn as nn
import torch.optim as optim
from .adabelief import AdaBelief
from .adafactor import Adafactor
from .adahessian import Adahessian
from .adamp import AdamP
from .lamb import NvLamb
from .lookahead import Lookahead
from .nadam import Nadam
from .novograd import NovoGrad
@ -17,7 +19,6 @@ from .nvnovograd import NvNovoGrad
from .radam import RAdam
from .rmsprop_tf import RMSpropTF
from .sgdp import SGDP
from .adabelief import AdaBelief
try:
from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD
@ -148,6 +149,10 @@ def create_optimizer_v2(
optimizer = NovoGrad(parameters, **opt_args)
elif opt_lower == 'nvnovograd':
optimizer = NvNovoGrad(parameters, **opt_args)
elif opt_lower == 'lamb':
optimizer = NvLamb(parameters, **opt_args)
# NVIDIA fused optimizers, require APEX to be installed
elif opt_lower == 'fusedsgd':
opt_args.pop('eps', None)
optimizer = FusedSGD(parameters, momentum=momentum, nesterov=True, **opt_args)
@ -163,6 +168,7 @@ def create_optimizer_v2(
elif opt_lower == 'fusednovograd':
opt_args.setdefault('betas', (0.95, 0.98))
optimizer = FusedNovoGrad(parameters, **opt_args)
else:
assert False and "Invalid optimizer"
raise ValueError

Loading…
Cancel
Save