parent
01cb46a9a5
commit
1042b8a146
@ -0,0 +1,204 @@
|
||||
""" PyTorch Lamb optimizer w/ behaviour similar to NVIDIA FusedLamb
|
||||
|
||||
This optimizer code was adapted from the following (starting with latest)
|
||||
* https://github.com/HabanaAI/Model-References/blob/2b435114fe8e31f159b1d3063b8280ae37af7423/PyTorch/nlp/bert/pretraining/lamb.py
|
||||
* https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/lamb.py
|
||||
* https://github.com/cybertronai/pytorch-lamb
|
||||
|
||||
Use FusedLamb if you can. The reason for including this variant of Lamb is to have a version that is
|
||||
similar in behaviour to APEX FusedLamb if you aren't using NVIDIA GPUs or cannot install APEX for whatever reason.
|
||||
|
||||
Original copyrights for above sources are below.
|
||||
"""
|
||||
# Copyright (c) 2021, Habana Labs Ltd. All rights reserved.
|
||||
|
||||
# Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# MIT License
|
||||
#
|
||||
# Copyright (c) 2019 cybertronai
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be included in all
|
||||
# copies or substantial portions of the Software.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
|
||||
import torch
|
||||
from torch.optim import Optimizer
|
||||
|
||||
|
||||
class NvLamb(Optimizer):
|
||||
"""Implements a pure pytorch variant of FuseLAMB (NvLamb variant) optimizer from apex.optimizers.FusedLAMB
|
||||
reference: https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/lamb.py
|
||||
|
||||
LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_.
|
||||
|
||||
Arguments:
|
||||
params (iterable): iterable of parameters to optimize or dicts defining
|
||||
parameter groups.
|
||||
lr (float, optional): learning rate. (default: 1e-3)
|
||||
betas (Tuple[float, float], optional): coefficients used for computing
|
||||
running averages of gradient and its norm. (default: (0.9, 0.999))
|
||||
eps (float, optional): term added to the denominator to improve
|
||||
numerical stability. (default: 1e-8)
|
||||
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
||||
grad_averaging (bool, optional): whether apply (1-beta2) to grad when
|
||||
calculating running averages of gradient. (default: True)
|
||||
set_grad_none (bool, optional): whether set grad to None when zero_grad()
|
||||
method is called. (default: True)
|
||||
max_grad_norm (float, optional): value used to clip global grad norm
|
||||
(default: 1.0)
|
||||
use_nvlamb (boolean, optional): Apply adaptive learning rate to 0.0
|
||||
weight decay parameter (default: False)
|
||||
|
||||
.. _Large Batch Optimization for Deep Learning - Training BERT in 76 minutes:
|
||||
https://arxiv.org/abs/1904.00962
|
||||
.. _On the Convergence of Adam and Beyond:
|
||||
https://openreview.net/forum?id=ryQu7f-RZ
|
||||
"""
|
||||
|
||||
def __init__(self, params, lr=1e-3, bias_correction=True,
|
||||
betas=(0.9, 0.999), eps=1e-6, weight_decay=0.01,
|
||||
grad_averaging=True, set_grad_none=True,
|
||||
max_grad_norm=1.0, use_nvlamb=False):
|
||||
defaults = dict(lr=lr, bias_correction=bias_correction,
|
||||
betas=betas, eps=eps, weight_decay=weight_decay,
|
||||
grad_averaging=grad_averaging,
|
||||
max_grad_norm=max_grad_norm)
|
||||
super().__init__(params, defaults)
|
||||
self.set_grad_none = set_grad_none
|
||||
self.use_nvlamb = use_nvlamb
|
||||
|
||||
def zero_grad(self):
|
||||
if self.set_grad_none:
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
p.grad = None
|
||||
else:
|
||||
super(NvLamb, self).zero_grad()
|
||||
|
||||
def step(self, closure=None):
|
||||
"""Performs a single optimization step.
|
||||
Arguments:
|
||||
closure (callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
device = self.param_groups[0]["params"][0].device
|
||||
|
||||
loss = None
|
||||
if closure is not None:
|
||||
loss = closure()
|
||||
|
||||
global_grad_norm = torch.zeros(1, device=device)
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
grad = p.grad.data
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError('Lamb does not support sparse gradients, consider SparseAdam instad.')
|
||||
global_grad_norm.add_(grad.pow(2).sum())
|
||||
|
||||
global_grad_norm_ = torch.sqrt(global_grad_norm)
|
||||
max_grad_norm = self.defaults['max_grad_norm']
|
||||
|
||||
if global_grad_norm_ > max_grad_norm:
|
||||
clip_global_grad_norm = global_grad_norm_ / max_grad_norm
|
||||
else:
|
||||
clip_global_grad_norm = 1.0
|
||||
|
||||
for group in self.param_groups:
|
||||
bias_correction = 1 if group['bias_correction'] else 0
|
||||
beta1, beta2 = group['betas']
|
||||
grad_averaging = 1 if group['grad_averaging'] else 0
|
||||
if grad_averaging:
|
||||
beta3 = 1 - beta1
|
||||
else:
|
||||
beta3 = 1.0
|
||||
|
||||
# assume same step across group now to simplify things
|
||||
# per parameter step can be easily support by making it tensor, or pass list into kernel
|
||||
if 'step' in group:
|
||||
group['step'] += 1
|
||||
else:
|
||||
group['step'] = 1
|
||||
|
||||
step_size = group['lr']
|
||||
|
||||
if bias_correction:
|
||||
bias_correction1 = 1 - beta1 ** group['step']
|
||||
bias_correction2 = 1 - beta2 ** group['step']
|
||||
else:
|
||||
bias_correction1, bias_correction2 = 1.0, 1.0
|
||||
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
grad = p.grad.data.div_(clip_global_grad_norm)
|
||||
state = self.state[p]
|
||||
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
# Exponential moving average of gradient values
|
||||
state['exp_avg'] = torch.zeros_like(p.data)
|
||||
# Exponential moving average of squared gradient values
|
||||
state['exp_avg_sq'] = torch.zeros_like(p.data)
|
||||
|
||||
exp_avg_, exp_avg_sq_ = state['exp_avg'], state['exp_avg_sq']
|
||||
|
||||
# Decay the first and second moment running average coefficient
|
||||
# m_t
|
||||
exp_avg_.mul_(beta1).add_(grad, alpha=beta3)
|
||||
# v_t
|
||||
exp_avg_sq_.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
||||
# create clones to avoid modifying runner stats
|
||||
exp_avg = exp_avg_.div(bias_correction1)
|
||||
exp_avg_sq = exp_avg_sq_.div(bias_correction2)
|
||||
|
||||
# || w_t ||
|
||||
weight_norm = p.data.norm(2.0)
|
||||
# u_t
|
||||
exp_avg_sq_sqrt = torch.sqrt(exp_avg_sq)
|
||||
adam_step = exp_avg.div_(exp_avg_sq_sqrt.add_(group['eps']))
|
||||
if group['weight_decay'] != 0:
|
||||
adam_step.add_(p.data, alpha=group['weight_decay'])
|
||||
# || u_t ||
|
||||
adam_norm = adam_step.norm(2.0)
|
||||
if (group['weight_decay'] != 0 or self.use_nvlamb) and adam_norm > 0 and weight_norm > 0:
|
||||
trust_ratio = weight_norm / adam_norm
|
||||
trust_ratio = trust_ratio.item()
|
||||
else:
|
||||
trust_ratio = 1
|
||||
|
||||
state['weight_norm'] = weight_norm
|
||||
state['adam_norm'] = adam_norm
|
||||
state['trust_ratio'] = trust_ratio
|
||||
|
||||
p.data.add_(adam_step, alpha=-step_size * trust_ratio)
|
||||
|
||||
return loss
|
Loading…
Reference in new issue