Add benchmark.py script, and update optimizer factory to be more friendly to use outside of argparse interface.

pull/450/head
Ross Wightman 4 years ago
parent 4bc103f504
commit 0e16d4e9fb

@ -0,0 +1,459 @@
#!/usr/bin/env python3
""" Model Benchmark Script
An inference and train step benchmark script for timm models.
Hacked together by Ross Wightman (https://github.com/rwightman)
"""
import argparse
import os
import csv
import json
import time
import logging
import torch
import torch.nn as nn
import torch.nn.parallel
from collections import OrderedDict
from contextlib import suppress
from functools import partial
from timm.models import create_model, is_model, list_models
from timm.optim import create_optimizer
from timm.data import resolve_data_config
from timm.utils import AverageMeter, setup_default_logging
has_apex = False
try:
from apex import amp
has_apex = True
except ImportError:
pass
has_native_amp = False
try:
if getattr(torch.cuda.amp, 'autocast') is not None:
has_native_amp = True
except AttributeError:
pass
torch.backends.cudnn.benchmark = True
_logger = logging.getLogger('validate')
parser = argparse.ArgumentParser(description='PyTorch Benchmark')
# benchmark specific args
parser.add_argument('--bench', default='both', type=str,
help="Benchmark mode. One of 'inference', 'train', 'both'. Defaults to 'inference'")
parser.add_argument('--detail', action='store_true', default=False,
help='Provide train fwd/bwd/opt breakdown detail if True. Defaults to False')
parser.add_argument('--results-file', default='', type=str, metavar='FILENAME',
help='Output csv file for validation results (summary)')
# common inference / train args
parser.add_argument('--model', '-m', metavar='NAME', default='resnet50',
help='model architecture (default: resnet50)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--img-size', default=None, type=int,
metavar='N', help='Input image dimension, uses model default if empty')
parser.add_argument('--input-size', default=None, nargs=3, type=int,
metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty')
parser.add_argument('--num-classes', type=int, default=None,
help='Number classes in dataset')
parser.add_argument('--gp', default=None, type=str, metavar='POOL',
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.')
parser.add_argument('--channels-last', action='store_true', default=False,
help='Use channels_last memory layout')
parser.add_argument('--amp', action='store_true', default=False,
help='Use AMP mixed precision. Defaults to Apex, fallback to native Torch AMP.')
parser.add_argument('--apex-amp', action='store_true', default=False,
help='Use NVIDIA Apex AMP mixed precision')
parser.add_argument('--native-amp', action='store_true', default=False,
help='Use Native Torch AMP mixed precision')
parser.add_argument('--torchscript', dest='torchscript', action='store_true',
help='convert model torchscript for inference')
# train optimizer parameters
parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "sgd"')
parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: None, use opt default)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='Optimizer momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.0001,
help='weight decay (default: 0.0001)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--clip-mode', type=str, default='norm',
help='Gradient clipping mode. One of ("norm", "value", "agc")')
# model regularization / loss params that impact model or loss fn
parser.add_argument('--smoothing', type=float, default=0.1,
help='Label smoothing (default: 0.1)')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=None, metavar='PCT',
help='Drop path rate (default: None)')
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
help='Drop block rate (default: None)')
def timestamp(sync=False):
return time.perf_counter()
def cuda_timestamp(sync=False, device=None):
if sync:
torch.cuda.synchronize(device=device)
return time.perf_counter()
def count_params(model):
return sum([m.numel() for m in model.parameters()])
class BenchmarkRunner:
def __init__(self, model_name, detail=False, device='cuda', torchscript=False, **kwargs):
self.model_name = model_name
self.detail = detail
self.device = device
self.model = create_model(
model_name,
num_classes=kwargs.pop('num_classes', None),
in_chans=3,
global_pool=kwargs.pop('gp', 'fast'),
scriptable=torchscript).to(device=self.device)
self.num_classes = self.model.num_classes
self.param_count = count_params(self.model)
_logger.info('Model %s created, param count: %d' % (model_name, self.param_count))
self.channels_last = kwargs.pop('channels_last', False)
self.use_amp = kwargs.pop('use_amp', '')
self.amp_autocast = torch.cuda.amp.autocast if self.use_amp == 'native' else suppress
if torchscript:
self.model = torch.jit.script(self.model)
data_config = resolve_data_config(kwargs, model=self.model, use_test_size=True)
self.input_size = data_config['input_size']
self.batch_size = kwargs.pop('batch_size', 256)
self.example_inputs = None
self.num_warm_iter = 10
self.num_bench_iter = 50
self.log_freq = 10
if 'cuda' in self.device:
self.time_fn = partial(cuda_timestamp, device=self.device)
else:
self.time_fn = timestamp
def _init_input(self):
self.example_inputs = torch.randn((self.batch_size,) + self.input_size, device=self.device)
if self.channels_last:
self.example_inputs = self.example_inputs.contiguous(memory_format=torch.channels_last)
class InferenceBenchmarkRunner(BenchmarkRunner):
def __init__(self, model_name, device='cuda', torchscript=False, **kwargs):
super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs)
self.model.eval()
if self.use_amp == 'apex':
self.model = amp.initialize(self.model, opt_level='O1')
if self.channels_last:
self.model = self.model.to(memory_format=torch.channels_last)
def run(self):
def _step():
t_step_start = self.time_fn()
with self.amp_autocast():
output = self.model(self.example_inputs)
t_step_end = self.time_fn(True)
return t_step_end - t_step_start
_logger.info(
f'Running inference benchmark on {self.model_name} for {self.num_bench_iter} steps w/ '
f'input size {self.input_size} and batch size {self.batch_size}.')
with torch.no_grad():
self._init_input()
for _ in range(self.num_warm_iter):
_step()
total_step = 0.
num_samples = 0
t_run_start = self.time_fn()
for i in range(self.num_bench_iter):
delta_fwd = _step()
total_step += delta_fwd
num_samples += self.batch_size
if (i + 1) % self.log_freq == 0:
_logger.info(
f"Infer [{i + 1}/{self.num_bench_iter}]."
f" {num_samples / total_step:0.2f} samples/sec."
f" {1000 * total_step / num_samples:0.3f} ms/sample.")
t_run_end = self.time_fn(True)
t_run_elapsed = t_run_end - t_run_start
results = dict(
samples_per_sec=round(num_samples / t_run_elapsed, 2),
step_time=round(1000 * total_step / num_samples, 3),
batch_size=self.batch_size,
param_count=round(self.param_count / 1e6, 2),
)
_logger.info(
f"Inference benchmark of {self.model_name} done. "
f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/sample")
return results
class TrainBenchmarkRunner(BenchmarkRunner):
def __init__(self, model_name, device='cuda', torchscript=False, **kwargs):
super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs)
self.model.train()
if kwargs.pop('smoothing', 0) > 0:
self.loss = nn.CrossEntropyLoss().to(self.device)
else:
self.loss = nn.CrossEntropyLoss().to(self.device)
self.target_shape = tuple()
self.optimizer = create_optimizer(
self.model,
opt_name=kwargs.pop('opt', 'sgd'),
lr=kwargs.pop('lr', 1e-4))
if self.use_amp == 'apex':
self.model, self.optimizer = amp.initialize(self.model, self.optimizer, opt_level='O1')
if self.channels_last:
self.model = self.model.to(memory_format=torch.channels_last)
def _gen_target(self, batch_size):
return torch.empty(
(batch_size,) + self.target_shape, device=self.device, dtype=torch.long).random_(self.num_classes)
def run(self):
def _step(detail=False):
self.optimizer.zero_grad() # can this be ignored?
t_start = self.time_fn()
t_fwd_end = t_start
t_bwd_end = t_start
with self.amp_autocast():
output = self.model(self.example_inputs)
if isinstance(output, tuple):
output = output[0]
if detail:
t_fwd_end = self.time_fn(True)
target = self._gen_target(output.shape[0])
self.loss(output, target).backward()
if detail:
t_bwd_end = self.time_fn(True)
self.optimizer.step()
t_end = self.time_fn(True)
if detail:
delta_fwd = t_fwd_end - t_start
delta_bwd = t_bwd_end - t_fwd_end
delta_opt = t_end - t_bwd_end
return delta_fwd, delta_bwd, delta_opt
else:
delta_step = t_end - t_start
return delta_step
_logger.info(
f'Running train benchmark on {self.model_name} for {self.num_bench_iter} steps w/ '
f'input size {self.input_size} and batch size {self.batch_size}.')
self._init_input()
for _ in range(self.num_warm_iter):
_step()
t_run_start = self.time_fn()
if self.detail:
total_fwd = 0.
total_bwd = 0.
total_opt = 0.
num_samples = 0
for i in range(self.num_bench_iter):
delta_fwd, delta_bwd, delta_opt = _step(True)
num_samples += self.batch_size
total_fwd += delta_fwd
total_bwd += delta_bwd
total_opt += delta_opt
if (i + 1) % self.log_freq == 0:
total_step = total_fwd + total_bwd + total_opt
_logger.info(
f"Train [{i + 1}/{self.num_bench_iter}]."
f" {num_samples / total_step:0.2f} samples/sec."
f" {1000 * total_fwd / num_samples:0.3f} ms/sample fwd,"
f" {1000 * total_bwd / num_samples:0.3f} ms/sample bwd,"
f" {1000 * total_opt / num_samples:0.3f} ms/sample opt."
)
total_step = total_fwd + total_bwd + total_opt
t_run_elapsed = self.time_fn() - t_run_start
results = dict(
samples_per_sec=round(num_samples / t_run_elapsed, 2),
step_time=round(1000 * total_step / num_samples, 3),
fwd_time=round(1000 * total_fwd / num_samples, 3),
bwd_time=round(1000 * total_bwd / num_samples, 3),
opt_time=round(1000 * total_opt / num_samples, 3),
batch_size=self.batch_size,
param_count=round(self.param_count / 1e6, 2),
)
else:
total_step = 0.
num_samples = 0
for i in range(self.num_bench_iter):
delta_step = _step(False)
num_samples += self.batch_size
total_step += delta_step
if (i + 1) % self.log_freq == 0:
_logger.info(
f"Train [{i + 1}/{self.num_bench_iter}]."
f" {num_samples / total_step:0.2f} samples/sec."
f" {1000 * total_step / num_samples:0.3f} ms/sample.")
t_run_elapsed = self.time_fn() - t_run_start
results = dict(
samples_per_sec=round(num_samples / t_run_elapsed, 2),
step_time=round(1000 * total_step / num_samples, 3),
batch_size=self.batch_size,
param_count=round(self.param_count / 1e6, 2),
)
_logger.info(
f"Train benchmark of {self.model_name} done. "
f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/sample")
return results
def decay_batch_exp(batch_size, factor=0.5, divisor=16):
out_batch_size = batch_size * factor
if out_batch_size > divisor:
out_batch_size = (out_batch_size + 1) // divisor * divisor
else:
out_batch_size = batch_size - 1
return max(0, int(out_batch_size))
def _try_run(model_name, bench_fn, initial_batch_size, bench_kwargs):
batch_size = initial_batch_size
results = dict()
while batch_size >= 1:
try:
bench = bench_fn(model_name=model_name, batch_size=batch_size, **bench_kwargs)
results = bench.run()
return results
except RuntimeError as e:
torch.cuda.empty_cache()
batch_size = decay_batch_exp(batch_size)
print(f'Reducing batch size to {batch_size}')
return results
def benchmark(args):
if args.amp:
if has_native_amp:
args.native_amp = True
elif has_apex:
args.apex_amp = True
else:
_logger.warning("Neither APEX or Native Torch AMP is available.")
if args.native_amp:
args.use_amp = 'native'
_logger.info('Benchmarking in mixed precision with native PyTorch AMP.')
elif args.apex_amp:
args.use_amp = 'apex'
_logger.info('Benchmarking in mixed precision with NVIDIA APEX AMP.')
else:
args.use_amp = ''
_logger.info('Benchmarking in float32. AMP not enabled.')
bench_kwargs = vars(args).copy()
model = bench_kwargs.pop('model')
batch_size = bench_kwargs.pop('batch_size')
bench_fns = (InferenceBenchmarkRunner,)
prefixes = ('infer',)
if args.bench == 'both':
bench_fns = (
InferenceBenchmarkRunner,
TrainBenchmarkRunner
)
prefixes = ('infer', 'train')
elif args.bench == 'train':
bench_fns = TrainBenchmarkRunner,
prefixes = 'train',
model_results = OrderedDict(model=model)
for prefix, bench_fn in zip(prefixes, bench_fns):
run_results = _try_run(model, bench_fn, initial_batch_size=batch_size, bench_kwargs=bench_kwargs)
if prefix:
run_results = {'_'.join([prefix, k]): v for k, v in run_results.items()}
model_results.update(run_results)
param_count = model_results.pop('infer_param_count', model_results.pop('train_param_count', 0))
model_results.setdefault('param_count', param_count)
model_results.pop('train_param_count', 0)
return model_results
def main():
setup_default_logging()
args = parser.parse_args()
model_cfgs = []
model_names = []
if args.model == 'all':
# validate all models in a list of names with pretrained checkpoints
args.pretrained = True
model_names = list_models(pretrained=True, exclude_filters=['*in21k'])
model_cfgs = [(n, None) for n in model_names]
elif not is_model(args.model):
# model name doesn't exist, try as wildcard filter
model_names = list_models(args.model)
model_cfgs = [(n, None) for n in model_names]
if len(model_cfgs):
results_file = args.results_file or './benchmark.csv'
_logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names)))
results = []
try:
for m, _ in model_cfgs:
args.model = m
r = benchmark(args)
results.append(r)
except KeyboardInterrupt as e:
pass
sort_key = 'train_samples_per_sec' if 'train' in args.bench else 'infer_samples_per_sec'
results = sorted(results, key=lambda x: x[sort_key], reverse=True)
if len(results):
write_results(results_file, results)
import json
json_str = json.dumps(results, indent=4)
print(json_str)
else:
benchmark(args)
def write_results(results_file, results):
with open(results_file, mode='w') as cf:
dw = csv.DictWriter(cf, fieldnames=results[0].keys())
dw.writeheader()
for r in results:
dw.writerow(r)
cf.flush()
if __name__ == '__main__':
main()

@ -10,4 +10,4 @@ from .radam import RAdam
from .rmsprop_tf import RMSpropTF
from .sgdp import SGDP
from .optim_factory import create_optimizer
from .optim_factory import create_optimizer, optimizer_kwargs

@ -1,8 +1,11 @@
""" Optimizer Factory w/ Custom Weight Decay
Hacked together by / Copyright 2020 Ross Wightman
"""
from typing import Optional
import torch
from torch import optim as optim
import torch.nn as nn
import torch.optim as optim
from .adafactor import Adafactor
from .adahessian import Adahessian
@ -37,9 +40,49 @@ def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
{'params': decay, 'weight_decay': weight_decay}]
def create_optimizer(args, model, filter_bias_and_bn=True):
opt_lower = args.opt.lower()
weight_decay = args.weight_decay
def optimizer_kwargs(cfg):
""" cfg/argparse to kwargs helper
Convert optimizer args in argparse args or cfg like object to keyword args for updated create fn.
"""
kwargs = dict(opt_name=cfg.opt, lr=cfg.lr, weight_decay=cfg.weight_decay)
if getattr(cfg, 'opt_eps', None) is not None:
kwargs['eps'] = cfg.opt_eps
if getattr(cfg, 'opt_betas', None) is not None:
kwargs['betas'] = cfg.opt_betas
if getattr(cfg, 'opt_args', None) is not None:
kwargs.update(cfg.opt_args)
kwargs['momentum'] = cfg.momentum
return kwargs
def create_optimizer(
model: nn.Module,
opt_name: str = 'sgd',
lr: Optional[float] = None,
weight_decay: float = 0.,
momentum: float = 0.9,
filter_bias_and_bn: bool = True,
**kwargs):
""" Create an optimizer.
TODO currently the model is passed in and all parameters are selected for optimization.
For more general use an interface that allows selection of parameters to optimize and lr groups, one of:
* a filter fn interface that further breaks params into groups in a weight_decay compatible fashion
* expose the parameters interface and leave it up to caller
Args:
model (nn.Module): model containing parameters to optimize
opt_name: name of optimizer to create
lr: initial learning rate
weight_decay: weight decay to apply in optimizer
momentum: momentum for momentum based optimizers (others may use betas via kwargs)
filter_bias_and_bn: filter out bias, bn and other 1d params from weight decay
**kwargs: extra optimizer specific kwargs to pass through
Returns:
Optimizer
"""
opt_lower = opt_name.lower()
if weight_decay and filter_bias_and_bn:
skip = {}
if hasattr(model, 'no_weight_decay'):
@ -48,26 +91,18 @@ def create_optimizer(args, model, filter_bias_and_bn=True):
weight_decay = 0.
else:
parameters = model.parameters()
if 'fused' in opt_lower:
assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers'
opt_args = dict(lr=args.lr, weight_decay=weight_decay)
if hasattr(args, 'opt_eps') and args.opt_eps is not None:
opt_args['eps'] = args.opt_eps
if hasattr(args, 'opt_betas') and args.opt_betas is not None:
opt_args['betas'] = args.opt_betas
if hasattr(args, 'opt_args') and args.opt_args is not None:
opt_args.update(args.opt_args)
opt_args = dict(lr=lr, weight_decay=weight_decay, **kwargs)
opt_split = opt_lower.split('_')
opt_lower = opt_split[-1]
if opt_lower == 'sgd' or opt_lower == 'nesterov':
opt_args.pop('eps', None)
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args)
optimizer = optim.SGD(parameters, momentum=momentum, nesterov=True, **opt_args)
elif opt_lower == 'momentum':
opt_args.pop('eps', None)
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args)
optimizer = optim.SGD(parameters, momentum=momentum, nesterov=False, **opt_args)
elif opt_lower == 'adam':
optimizer = optim.Adam(parameters, **opt_args)
elif opt_lower == 'adamw':
@ -79,29 +114,29 @@ def create_optimizer(args, model, filter_bias_and_bn=True):
elif opt_lower == 'adamp':
optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args)
elif opt_lower == 'sgdp':
optimizer = SGDP(parameters, momentum=args.momentum, nesterov=True, **opt_args)
optimizer = SGDP(parameters, momentum=momentum, nesterov=True, **opt_args)
elif opt_lower == 'adadelta':
optimizer = optim.Adadelta(parameters, **opt_args)
elif opt_lower == 'adafactor':
if not args.lr:
if not lr:
opt_args['lr'] = None
optimizer = Adafactor(parameters, **opt_args)
elif opt_lower == 'adahessian':
optimizer = Adahessian(parameters, **opt_args)
elif opt_lower == 'rmsprop':
optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=args.momentum, **opt_args)
optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=momentum, **opt_args)
elif opt_lower == 'rmsproptf':
optimizer = RMSpropTF(parameters, alpha=0.9, momentum=args.momentum, **opt_args)
optimizer = RMSpropTF(parameters, alpha=0.9, momentum=momentum, **opt_args)
elif opt_lower == 'novograd':
optimizer = NovoGrad(parameters, **opt_args)
elif opt_lower == 'nvnovograd':
optimizer = NvNovoGrad(parameters, **opt_args)
elif opt_lower == 'fusedsgd':
opt_args.pop('eps', None)
optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=True, **opt_args)
optimizer = FusedSGD(parameters, momentum=momentum, nesterov=True, **opt_args)
elif opt_lower == 'fusedmomentum':
opt_args.pop('eps', None)
optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=False, **opt_args)
optimizer = FusedSGD(parameters, momentum=momentum, nesterov=False, **opt_args)
elif opt_lower == 'fusedadam':
optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args)
elif opt_lower == 'fusedadamw':

@ -32,7 +32,7 @@ from timm.data import create_dataset, create_loader, resolve_data_config, Mixup,
from timm.models import create_model, resume_checkpoint, load_checkpoint, convert_splitbn_model, model_parameters
from timm.utils import *
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy, JsdCrossEntropy
from timm.optim import create_optimizer
from timm.optim import create_optimizer, optimizer_kwargs
from timm.scheduler import create_scheduler
from timm.utils import ApexScaler, NativeScaler
@ -384,7 +384,7 @@ def main():
assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model'
model = torch.jit.script(model)
optimizer = create_optimizer(args, model)
optimizer = create_optimizer(model, **optimizer_kwargs(cfg=args))
# setup automatic mixed-precision (AMP) loss scaling and op casting
amp_autocast = suppress # do nothing

Loading…
Cancel
Save