* Move 'test time pool' to Module that can be used by any model, remove from DPN * Remove ResNext model file and combine with ResNet * Remove fbresnet200 as it was an old conversion and pretrained performance not worth param count * Cleanup adaptive avgmax pooling and add back conctat variant * Factor out checkpoint load fnpull/1/head
parent
f2029dfb65
commit
0bc50e84f8
@ -1,2 +1,3 @@
|
||||
from .model_factory import create_model
|
||||
from .model_factory import create_model, load_checkpoint
|
||||
from .test_time_pool import TestTimePoolHead
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,175 +0,0 @@
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
import torch.utils.model_zoo as model_zoo
|
||||
from models.adaptive_avgmax_pool import AdaptiveAvgMaxPool2d
|
||||
|
||||
__all__ = ['ResNeXt', 'resnext50', 'resnext101', 'resnext152']
|
||||
|
||||
|
||||
def conv3x3(in_planes, out_planes, stride=1):
|
||||
"3x3 convolution with padding"
|
||||
return nn.Conv2d(
|
||||
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
||||
|
||||
|
||||
class ResNeXtBottleneckC(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=32, base_width=4):
|
||||
super(ResNeXtBottleneckC, self).__init__()
|
||||
|
||||
width = math.floor(planes * (base_width / 64)) * cardinality
|
||||
|
||||
self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(width)
|
||||
self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride,
|
||||
padding=1, bias=False, groups=cardinality)
|
||||
self.bn2 = nn.BatchNorm2d(width)
|
||||
self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes * 4)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNeXt(nn.Module):
|
||||
|
||||
def __init__(self, block, layers, num_classes=1000, cardinality=32, base_width=4,
|
||||
drop_rate=0., global_pool='avg'):
|
||||
self.num_classes = num_classes
|
||||
self.inplanes = 64
|
||||
self.cardinality = cardinality
|
||||
self.base_width = base_width
|
||||
self.drop_rate = drop_rate
|
||||
super(ResNeXt, self).__init__()
|
||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(64)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.layer1 = self._make_layer(block, 64, layers[0])
|
||||
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
||||
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
||||
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
||||
self.avgpool = AdaptiveAvgMaxPool2d(pool_type=global_pool)
|
||||
self.num_features = 512 * block.expansion
|
||||
self.fc = nn.Linear(self.num_features, num_classes)
|
||||
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
nn.init.constant_(m.weight, 1.)
|
||||
nn.init.constant_(m.bias, 0.)
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride=1):
|
||||
downsample = None
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
downsample = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
)
|
||||
|
||||
layers = [block(self.inplanes, planes, stride, downsample, self.cardinality, self.base_width)]
|
||||
self.inplanes = planes * block.expansion
|
||||
for i in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes, 1, None, self.cardinality, self.base_width))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def get_classifier(self):
|
||||
return self.fc
|
||||
|
||||
def reset_classifier(self, num_classes, global_pool='avg'):
|
||||
self.avgpool = AdaptiveAvgMaxPool2d(pool_type=global_pool)
|
||||
self.num_classes = num_classes
|
||||
del self.fc
|
||||
if num_classes:
|
||||
self.fc = nn.Linear(self.num_features, num_classes)
|
||||
else:
|
||||
self.fc = None
|
||||
|
||||
def forward_features(self, x, pool=True):
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
x = self.maxpool(x)
|
||||
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
if pool:
|
||||
x = self.avgpool(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
if self.drop_rate > 0.:
|
||||
x = F.dropout(x, p=self.drop_rate, training=self.training)
|
||||
x = self.fc(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def resnext50(cardinality=32, base_width=4, pretrained=False, **kwargs):
|
||||
"""Constructs a ResNeXt-50 model.
|
||||
|
||||
Args:
|
||||
cardinality (int): Cardinality of the aggregated transform
|
||||
base_width (int): Base width of the grouped convolution
|
||||
shortcut ('A'|'B'|'C'): 'B' use 1x1 conv to downsample, 'C' use 1x1 conv on every residual connection
|
||||
"""
|
||||
model = ResNeXt(
|
||||
ResNeXtBottleneckC, [3, 4, 6, 3], cardinality=cardinality, base_width=base_width, **kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def resnext101(cardinality=32, base_width=4, pretrained=False, **kwargs):
|
||||
"""Constructs a ResNeXt-101 model.
|
||||
|
||||
Args:
|
||||
cardinality (int): Cardinality of the aggregated transform
|
||||
base_width (int): Base width of the grouped convolution
|
||||
shortcut ('A'|'B'|'C'): 'B' use 1x1 conv to downsample, 'C' use 1x1 conv on every residual connection
|
||||
"""
|
||||
model = ResNeXt(
|
||||
ResNeXtBottleneckC, [3, 4, 23, 3], cardinality=cardinality, base_width=base_width, **kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def resnext152(cardinality=32, base_width=4, pretrained=False, **kwargs):
|
||||
"""Constructs a ResNeXt-152 model.
|
||||
|
||||
Args:
|
||||
cardinality (int): Cardinality of the aggregated transform
|
||||
base_width (int): Base width of the grouped convolution
|
||||
shortcut ('A'|'B'|'C'): 'B' use 1x1 conv to downsample, 'C' use 1x1 conv on every residual connection
|
||||
"""
|
||||
model = ResNeXt(
|
||||
ResNeXtBottleneckC, [3, 8, 36, 3], cardinality=cardinality, base_width=base_width, **kwargs)
|
||||
return model
|
@ -0,0 +1,27 @@
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from models.adaptive_avgmax_pool import adaptive_avgmax_pool2d
|
||||
|
||||
|
||||
class TestTimePoolHead(nn.Module):
|
||||
def __init__(self, base, original_pool=7):
|
||||
super(TestTimePoolHead, self).__init__()
|
||||
self.base = base
|
||||
self.original_pool = original_pool
|
||||
base_fc = self.base.get_classifier()
|
||||
if isinstance(base_fc, nn.Conv2d):
|
||||
self.fc = base_fc
|
||||
else:
|
||||
self.fc = nn.Conv2d(
|
||||
self.base.num_features, self.base.num_classes, kernel_size=1, bias=True)
|
||||
self.fc.weight.data.copy_(base_fc.weight.data.view(self.fc.weight.size()))
|
||||
self.fc.bias.data.copy_(base_fc.bias.data.view(self.fc.bias.size()))
|
||||
self.base.reset_classifier(0) # delete original fc layer
|
||||
|
||||
def forward(self, x):
|
||||
x = self.base.forward_features(x, pool=False)
|
||||
x = F.avg_pool2d(x, kernel_size=self.original_pool, stride=1)
|
||||
x = self.fc(x)
|
||||
x = adaptive_avgmax_pool2d(x, 1)
|
||||
return x.view(x.size(0), -1)
|
||||
|
Loading…
Reference in new issue