vit, tresnet and mobilenetV3 ImageNet-21K-P weights

pull/595/head
talrid 4 years ago
parent b81cd75eea
commit 0968bdeca3

@ -39,6 +39,12 @@ default_cfgs = {
'mobilenetv3_large_100': _cfg( 'mobilenetv3_large_100': _cfg(
interpolation='bicubic', interpolation='bicubic',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth'), url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth'),
'mobilenetv3_large_100_1k_miil_77_9': _cfg(
interpolation='bilinear', mean=(0, 0, 0), std=(1, 1, 1),
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/mobilenetv3_large_100_1k_miil_77_9.pth'),
'mobilenetv3_large_100_21k_miil': _cfg(
interpolation='bilinear', mean=(0, 0, 0), std=(1, 1, 1),
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/mobilenetv3_large_100_21k_miil.pth', num_classes=11221),
'mobilenetv3_small_075': _cfg(url=''), 'mobilenetv3_small_075': _cfg(url=''),
'mobilenetv3_small_100': _cfg(url=''), 'mobilenetv3_small_100': _cfg(url=''),
'mobilenetv3_rw': _cfg( 'mobilenetv3_rw': _cfg(
@ -367,6 +373,20 @@ def mobilenetv3_large_100(pretrained=False, **kwargs):
return model return model
@register_model
def mobilenetv3_large_100_1k_miil(pretrained=False, **kwargs):
""" MobileNet V3 """
model = _gen_mobilenet_v3('mobilenetv3_large_100_1k_miil_77_9', 1.0, pretrained=pretrained, **kwargs)
return model
@register_model
def mobilenetv3_large_100_21k_miil(pretrained=False, **kwargs):
""" MobileNet V3 """
model = _gen_mobilenet_v3('mobilenetv3_large_100_21k_miil', 1.0, pretrained=pretrained, **kwargs)
return model
@register_model @register_model
def mobilenetv3_small_075(pretrained=False, **kwargs): def mobilenetv3_small_075(pretrained=False, **kwargs):
""" MobileNet V3 """ """ MobileNet V3 """

@ -32,7 +32,9 @@ def _cfg(url='', **kwargs):
default_cfgs = { default_cfgs = {
'tresnet_m': _cfg( 'tresnet_m': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_m_80_8-dbc13962.pth'), url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/tresnet_m_1k_miil_83_1.pth'),
'tresnet_m_21k_miil': _cfg(
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/tresnet_m_miil_21k.pth', num_classes=11221),
'tresnet_l': _cfg( 'tresnet_l': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_l_81_5-235b486c.pth'), url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_l_81_5-235b486c.pth'),
'tresnet_xl': _cfg( 'tresnet_xl': _cfg(
@ -264,6 +266,10 @@ def tresnet_m(pretrained=False, **kwargs):
model_kwargs = dict(layers=[3, 4, 11, 3], **kwargs) model_kwargs = dict(layers=[3, 4, 11, 3], **kwargs)
return _create_tresnet('tresnet_m', pretrained=pretrained, **model_kwargs) return _create_tresnet('tresnet_m', pretrained=pretrained, **model_kwargs)
@register_model
def tresnet_m_21k_miil(pretrained=False, **kwargs):
model_kwargs = dict(layers=[3, 4, 11, 3], **kwargs)
return _create_tresnet('tresnet_m_21k_miil', pretrained=pretrained, **model_kwargs)
@register_model @register_model
def tresnet_l(pretrained=False, **kwargs): def tresnet_l(pretrained=False, **kwargs):

@ -118,6 +118,17 @@ default_cfgs = {
'vit_deit_base_distilled_patch16_384': _cfg( 'vit_deit_base_distilled_patch16_384': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth', url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth',
input_size=(3, 384, 384), crop_pct=1.0, classifier=('head', 'head_dist')), input_size=(3, 384, 384), crop_pct=1.0, classifier=('head', 'head_dist')),
# ViT ImageNet-21K-P pretraining
'vit_base_patch16_224_21k_miil': _cfg(
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/vit_base_patch16_224_21k_miil.pth',
mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', num_classes=11221,
),
'vit_base_patch16_224_1k_miil': _cfg(
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm'
'/vit_base_patch16_224_1k_miil_84_4.pth',
mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear',
),
} }
@ -155,7 +166,7 @@ class Attention(nn.Module):
def forward(self, x): def forward(self, x):
B, N, C = x.shape B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1) attn = attn.softmax(dim=-1)
@ -652,7 +663,7 @@ def vit_deit_tiny_distilled_patch16_224(pretrained=False, **kwargs):
""" """
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
model = _create_vision_transformer( model = _create_vision_transformer(
'vit_deit_tiny_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs) 'vit_deit_tiny_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs)
return model return model
@ -663,7 +674,7 @@ def vit_deit_small_distilled_patch16_224(pretrained=False, **kwargs):
""" """
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
model = _create_vision_transformer( model = _create_vision_transformer(
'vit_deit_small_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs) 'vit_deit_small_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs)
return model return model
@ -674,7 +685,7 @@ def vit_deit_base_distilled_patch16_224(pretrained=False, **kwargs):
""" """
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = _create_vision_transformer( model = _create_vision_transformer(
'vit_deit_base_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs) 'vit_deit_base_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs)
return model return model
@ -687,3 +698,21 @@ def vit_deit_base_distilled_patch16_384(pretrained=False, **kwargs):
model = _create_vision_transformer( model = _create_vision_transformer(
'vit_deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **model_kwargs) 'vit_deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **model_kwargs)
return model return model
@register_model
def vit_base_patch16_224_21k_miil(pretrained=False, **kwargs):
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K
"""
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, **kwargs)
model = _create_vision_transformer('vit_base_patch16_224_21k_miil', pretrained=pretrained, **model_kwargs)
return model
@register_model
def vit_base_patch16_224_1k_miil(pretrained=False, **kwargs):
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K
"""
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, **kwargs)
model = _create_vision_transformer('vit_base_patch16_224_1k_miil_84_4', pretrained=pretrained, **model_kwargs)
return model
Loading…
Cancel
Save