Update DenseNet to latest in Torchvision (torchscript compat, checkpointing, proper init). Start adding ehanced configurability, stem options...

pull/155/head
Ross Wightman 5 years ago
parent a7ebe09029
commit 022ed001f3

@ -8,6 +8,8 @@ from collections import OrderedDict
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import torch.utils.checkpoint as cp
from torch.jit.annotations import List
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import load_pretrained from .helpers import load_pretrained
@ -28,53 +30,121 @@ def _cfg(url=''):
default_cfgs = { default_cfgs = {
'densenet121': _cfg(url='https://download.pytorch.org/models/densenet121-a639ec97.pth'), 'densenet121': _cfg(url='https://download.pytorch.org/models/densenet121-a639ec97.pth'),
'densenet121d': _cfg(url=''),
'densenet121tn': _cfg(url=''),
'densenet169': _cfg(url='https://download.pytorch.org/models/densenet169-b2777c0a.pth'), 'densenet169': _cfg(url='https://download.pytorch.org/models/densenet169-b2777c0a.pth'),
'densenet201': _cfg(url='https://download.pytorch.org/models/densenet201-c1103571.pth'), 'densenet201': _cfg(url='https://download.pytorch.org/models/densenet201-c1103571.pth'),
'densenet161': _cfg(url='https://download.pytorch.org/models/densenet161-8d451a50.pth'), 'densenet161': _cfg(url='https://download.pytorch.org/models/densenet161-8d451a50.pth'),
} }
class _DenseLayer(nn.Sequential): class _DenseLayer(nn.Module):
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate): def __init__(self, num_input_features, growth_rate, bn_size, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
drop_rate=0., memory_efficient=False):
super(_DenseLayer, self).__init__() super(_DenseLayer, self).__init__()
self.add_module('norm1', nn.BatchNorm2d(num_input_features)), self.add_module('norm1', norm_layer(num_input_features)),
self.add_module('relu1', nn.ReLU(inplace=True)), self.add_module('relu1', act_layer(inplace=True)),
self.add_module('conv1', nn.Conv2d(num_input_features, bn_size * self.add_module('conv1', nn.Conv2d(
growth_rate, kernel_size=1, stride=1, bias=False)), num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)),
self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)), self.add_module('norm2', norm_layer(bn_size * growth_rate)),
self.add_module('relu2', nn.ReLU(inplace=True)), self.add_module('relu2', act_layer(inplace=True)),
self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate, self.add_module('conv2', nn.Conv2d(
kernel_size=3, stride=1, padding=1, bias=False)), bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)),
self.drop_rate = drop_rate self.drop_rate = float(drop_rate)
self.memory_efficient = memory_efficient
def bn_function(self, inputs):
# type: (List[torch.Tensor]) -> torch.Tensor
concated_features = torch.cat(inputs, 1)
bottleneck_output = self.conv1(self.relu1(self.norm1(concated_features))) # noqa: T484
return bottleneck_output
# todo: rewrite when torchscript supports any
def any_requires_grad(self, input):
# type: (List[torch.Tensor]) -> bool
for tensor in input:
if tensor.requires_grad:
return True
return False
@torch.jit.unused # noqa: T484
def call_checkpoint_bottleneck(self, input):
# type: (List[torch.Tensor]) -> torch.Tensor
def closure(*inputs):
return self.bn_function(*inputs)
return cp.checkpoint(closure, input)
@torch.jit._overload_method # noqa: F811
def forward(self, input):
# type: (List[torch.Tensor]) -> (torch.Tensor)
pass
@torch.jit._overload_method # noqa: F811
def forward(self, input):
# type: (torch.Tensor) -> (torch.Tensor)
pass
# torchscript does not yet support *args, so we overload method
# allowing it to take either a List[Tensor] or single Tensor
def forward(self, input): # noqa: F811
if isinstance(input, torch.Tensor):
prev_features = [input]
else:
prev_features = input
def forward(self, x): if self.memory_efficient and self.any_requires_grad(prev_features):
new_features = super(_DenseLayer, self).forward(x) if torch.jit.is_scripting():
raise Exception("Memory Efficient not supported in JIT")
bottleneck_output = self.call_checkpoint_bottleneck(prev_features)
else:
bottleneck_output = self.bn_function(prev_features)
new_features = self.conv2(self.relu2(self.norm2(bottleneck_output)))
if self.drop_rate > 0: if self.drop_rate > 0:
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
return torch.cat([x, new_features], 1) return new_features
class _DenseBlock(nn.ModuleDict):
_version = 2
class _DenseBlock(nn.Sequential): def __init__(self, num_layers, num_input_features, bn_size, growth_rate, act_layer=nn.ReLU,
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate): norm_layer=nn.BatchNorm2d, drop_rate=0., memory_efficient=False):
super(_DenseBlock, self).__init__() super(_DenseBlock, self).__init__()
for i in range(num_layers): for i in range(num_layers):
layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate) layer = _DenseLayer(
num_input_features + i * growth_rate,
growth_rate=growth_rate,
bn_size=bn_size,
act_layer=act_layer,
norm_layer=norm_layer,
drop_rate=drop_rate,
memory_efficient=memory_efficient,
)
self.add_module('denselayer%d' % (i + 1), layer) self.add_module('denselayer%d' % (i + 1), layer)
def forward(self, init_features):
features = [init_features]
for name, layer in self.items():
new_features = layer(features)
features.append(new_features)
return torch.cat(features, 1)
class _Transition(nn.Sequential): class _Transition(nn.Sequential):
def __init__(self, num_input_features, num_output_features): def __init__(self, num_input_features, num_output_features, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
super(_Transition, self).__init__() super(_Transition, self).__init__()
self.add_module('norm', nn.BatchNorm2d(num_input_features)) self.add_module('norm', norm_layer(num_input_features))
self.add_module('relu', nn.ReLU(inplace=True)) self.add_module('relu', act_layer(inplace=True))
self.add_module('conv', nn.Conv2d(num_input_features, num_output_features, self.add_module('conv', nn.Conv2d(
kernel_size=1, stride=1, bias=False)) num_input_features, num_output_features, kernel_size=1, stride=1, bias=False))
self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2)) self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))
class DenseNet(nn.Module): class DenseNet(nn.Module):
r"""Densenet-BC model class, based on r"""Densenet-BC model class, based on
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args: Args:
growth_rate (int) - how many filters to add each layer (`k` in paper) growth_rate (int) - how many filters to add each layer (`k` in paper)
@ -84,44 +154,87 @@ class DenseNet(nn.Module):
(i.e. bn_size * k features in the bottleneck layer) (i.e. bn_size * k features in the bottleneck layer)
drop_rate (float) - dropout rate after each dense layer drop_rate (float) - dropout rate after each dense layer
num_classes (int) - number of classification classes num_classes (int) - number of classification classes
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_
""" """
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64,
num_init_features=64, bn_size=4, drop_rate=0, bn_size=4, stem_type='', num_classes=1000, in_chans=3, global_pool='avg',
num_classes=1000, in_chans=3, global_pool='avg'): act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, drop_rate=0, memory_efficient=False):
self.num_classes = num_classes self.num_classes = num_classes
self.drop_rate = drop_rate self.drop_rate = drop_rate
deep_stem = 'deep' in stem_type
super(DenseNet, self).__init__() super(DenseNet, self).__init__()
# First convolution # First convolution
if aa_layer is None:
max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
else:
max_pool = nn.Sequential(*[
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
aa_layer(channels=self.inplanes, stride=2)])
if deep_stem:
stem_chs_1 = stem_chs_2 = num_init_features // 2
if 'tiered' in stem_type:
stem_chs_1 = 3 * (num_init_features // 8)
stem_chs_2 = num_init_features if 'narrow' in stem_type else 6 * (num_init_features // 8)
self.features = nn.Sequential(OrderedDict([
('conv0', nn.Conv2d(in_chans, stem_chs_1, 3, stride=2, padding=1, bias=False)),
('norm0', norm_layer(stem_chs_1)),
('relu0', act_layer(inplace=True)),
('conv1', nn.Conv2d(stem_chs_1, stem_chs_2, 3, stride=1, padding=1, bias=False)),
('norm1', norm_layer(stem_chs_2)),
('relu1', act_layer(inplace=True)),
('conv2', nn.Conv2d(stem_chs_2, num_init_features, 3, stride=1, padding=1, bias=False)),
('norm2', norm_layer(num_init_features)),
('relu2', act_layer(inplace=True)),
('pool0', max_pool),
]))
else:
self.features = nn.Sequential(OrderedDict([ self.features = nn.Sequential(OrderedDict([
('conv0', nn.Conv2d(in_chans, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), ('conv0', nn.Conv2d(in_chans, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
('norm0', nn.BatchNorm2d(num_init_features)), ('norm0', norm_layer(num_init_features)),
('relu0', nn.ReLU(inplace=True)), ('relu0', act_layer(inplace=True)),
('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)), ('pool0', max_pool),
])) ]))
# Each denseblock # Each denseblock
num_features = num_init_features num_features = num_init_features
for i, num_layers in enumerate(block_config): for i, num_layers in enumerate(block_config):
block = _DenseBlock(num_layers=num_layers, num_input_features=num_features, block = _DenseBlock(
bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate) num_layers=num_layers,
num_input_features=num_features,
bn_size=bn_size,
growth_rate=growth_rate,
drop_rate=drop_rate,
memory_efficient=memory_efficient
)
self.features.add_module('denseblock%d' % (i + 1), block) self.features.add_module('denseblock%d' % (i + 1), block)
num_features = num_features + num_layers * growth_rate num_features = num_features + num_layers * growth_rate
if i != len(block_config) - 1: if i != len(block_config) - 1:
trans = _Transition( trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2)
num_input_features=num_features, num_output_features=num_features // 2)
self.features.add_module('transition%d' % (i + 1), trans) self.features.add_module('transition%d' % (i + 1), trans)
num_features = num_features // 2 num_features = num_features // 2
# Final batch norm # Final batch norm
self.features.add_module('norm5', nn.BatchNorm2d(num_features)) self.features.add_module('norm5', norm_layer(num_features))
self.act = act_layer(inplace=True)
# Linear layer # Linear layer
self.num_features = num_features self.num_features = num_features
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.classifier = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes) self.classifier = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
# Official init from torch repo.
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.constant_(m.bias, 0)
def get_classifier(self): def get_classifier(self):
return self.classifier return self.classifier
@ -136,19 +249,20 @@ class DenseNet(nn.Module):
def forward_features(self, x): def forward_features(self, x):
x = self.features(x) x = self.features(x)
x = F.relu(x, inplace=True) x = self.act(x)
return x return x
def forward(self, x): def forward(self, x):
x = self.forward_features(x) x = self.forward_features(x)
x = self.global_pool(x).flatten(1) x = self.global_pool(x).flatten(1)
if self.drop_rate > 0.: # both classifier and block drop?
x = F.dropout(x, p=self.drop_rate, training=self.training) # if self.drop_rate > 0.:
# x = F.dropout(x, p=self.drop_rate, training=self.training)
x = self.classifier(x) x = self.classifier(x)
return x return x
def _filter_pretrained(state_dict): def _filter_torchvision_pretrained(state_dict):
pattern = re.compile( pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
@ -161,57 +275,90 @@ def _filter_pretrained(state_dict):
return state_dict return state_dict
def _densenet(variant, growth_rate, block_config, num_init_features, pretrained, **kwargs):
if kwargs.pop('features_only', False):
assert False, 'Not Implemented' # TODO
load_strict = False
kwargs.pop('num_classes', 0)
model_class = DenseNet
else:
load_strict = True
model_class = DenseNet
default_cfg = default_cfgs[variant]
model = model_class(
growth_rate=growth_rate, block_config=block_config, num_init_features=num_init_features, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(
model, default_cfg,
num_classes=kwargs.get('num_classes', 0),
in_chans=kwargs.get('in_chans', 3),
filter_fn=_filter_torchvision_pretrained,
strict=load_strict)
return model
@register_model @register_model
def densenet121(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def densenet121(pretrained=False, **kwargs):
r"""Densenet-121 model from r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
""" """
default_cfg = default_cfgs['densenet121'] model = _densenet(
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16), 'densenet121', growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64,
num_classes=num_classes, in_chans=in_chans, **kwargs) pretrained=pretrained, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans, filter_fn=_filter_pretrained)
return model return model
@register_model @register_model
def densenet169(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def densenet121d(pretrained=False, **kwargs):
r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
model = _densenet(
'densenet121d', growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64,
stem_type='deep', pretrained=pretrained, **kwargs)
return model
@register_model
def densenet121tn(pretrained=False, **kwargs):
r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
model = _densenet(
'densenet121tn', growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64,
stem_type='deep_tiered_narrow', pretrained=pretrained, **kwargs)
return model
@register_model
def densenet169(pretrained=False, **kwargs):
r"""Densenet-169 model from r"""Densenet-169 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
""" """
default_cfg = default_cfgs['densenet169'] model = _densenet(
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 32, 32), 'densenet169', growth_rate=32, block_config=(6, 12, 32, 32), num_init_features=64,
num_classes=num_classes, in_chans=in_chans, **kwargs) pretrained=pretrained, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans, filter_fn=_filter_pretrained)
return model return model
@register_model @register_model
def densenet201(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def densenet201(pretrained=False, **kwargs):
r"""Densenet-201 model from r"""Densenet-201 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
""" """
default_cfg = default_cfgs['densenet201'] model = _densenet(
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 48, 32), 'densenet201', growth_rate=32, block_config=(6, 12, 48, 32), num_init_features=64,
num_classes=num_classes, in_chans=in_chans, **kwargs) pretrained=pretrained, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans, filter_fn=_filter_pretrained)
return model return model
@register_model @register_model
def densenet161(pretrained=False, num_classes=1000, in_chans=3, **kwargs): def densenet161(pretrained=False, **kwargs):
r"""Densenet-201 model from r"""Densenet-201 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
""" """
default_cfg = default_cfgs['densenet161'] model = _densenet(
model = DenseNet(num_init_features=96, growth_rate=48, block_config=(6, 12, 36, 24), 'densenet161', growth_rate=48, block_config=(6, 12, 36, 24), num_init_features=96,
num_classes=num_classes, in_chans=in_chans, **kwargs) pretrained=pretrained, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(model, default_cfg, num_classes, in_chans, filter_fn=_filter_pretrained)
return model return model

Loading…
Cancel
Save