|
|
|
""" ConViT Model
|
|
|
|
|
|
|
|
@article{d2021convit,
|
|
|
|
title={ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases},
|
|
|
|
author={d'Ascoli, St{\'e}phane and Touvron, Hugo and Leavitt, Matthew and Morcos, Ari and Biroli, Giulio and Sagun, Levent},
|
|
|
|
journal={arXiv preprint arXiv:2103.10697},
|
|
|
|
year={2021}
|
|
|
|
}
|
|
|
|
|
|
|
|
Paper link: https://arxiv.org/abs/2103.10697
|
|
|
|
Original code: https://github.com/facebookresearch/convit, original copyright below
|
|
|
|
|
|
|
|
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
|
|
|
|
"""
|
|
|
|
# Copyright (c) 2015-present, Facebook, Inc.
|
|
|
|
# All rights reserved.
|
|
|
|
#
|
|
|
|
# This source code is licensed under the CC-by-NC license found in the
|
|
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
#
|
|
|
|
'''These modules are adapted from those of timm, see
|
|
|
|
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
|
|
|
'''
|
|
|
|
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
from timm.layers import DropPath, trunc_normal_, PatchEmbed, Mlp
|
|
|
|
from ._builder import build_model_with_cfg
|
|
|
|
from ._features_fx import register_notrace_module
|
|
|
|
from ._registry import register_model
|
|
|
|
from .vision_transformer_hybrid import HybridEmbed
|
|
|
|
|
|
|
|
|
|
|
|
__all__ = ['ConViT']
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
'url': url,
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'fixed_input_size': True,
|
|
|
|
'first_conv': 'patch_embed.proj', 'classifier': 'head',
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
# ConViT
|
|
|
|
'convit_tiny': _cfg(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convit/convit_tiny.pth"),
|
|
|
|
'convit_small': _cfg(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convit/convit_small.pth"),
|
|
|
|
'convit_base': _cfg(
|
|
|
|
url="https://dl.fbaipublicfiles.com/convit/convit_base.pth")
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
@register_notrace_module # reason: FX can't symbolically trace control flow in forward method
|
|
|
|
class GPSA(nn.Module):
|
|
|
|
def __init__(
|
|
|
|
self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., locality_strength=1.):
|
|
|
|
super().__init__()
|
|
|
|
self.num_heads = num_heads
|
|
|
|
self.dim = dim
|
|
|
|
head_dim = dim // num_heads
|
|
|
|
self.scale = head_dim ** -0.5
|
|
|
|
self.locality_strength = locality_strength
|
|
|
|
|
|
|
|
self.qk = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
|
|
|
self.v = nn.Linear(dim, dim, bias=qkv_bias)
|
|
|
|
|
|
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
self.pos_proj = nn.Linear(3, num_heads)
|
|
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
self.gating_param = nn.Parameter(torch.ones(self.num_heads))
|
|
|
|
self.rel_indices: torch.Tensor = torch.zeros(1, 1, 1, 3) # silly torchscript hack, won't work with None
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
B, N, C = x.shape
|
|
|
|
if self.rel_indices is None or self.rel_indices.shape[1] != N:
|
|
|
|
self.rel_indices = self.get_rel_indices(N)
|
|
|
|
attn = self.get_attention(x)
|
|
|
|
v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
|
|
x = self.proj(x)
|
|
|
|
x = self.proj_drop(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def get_attention(self, x):
|
|
|
|
B, N, C = x.shape
|
|
|
|
qk = self.qk(x).reshape(B, N, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
|
|
q, k = qk[0], qk[1]
|
|
|
|
pos_score = self.rel_indices.expand(B, -1, -1, -1)
|
|
|
|
pos_score = self.pos_proj(pos_score).permute(0, 3, 1, 2)
|
|
|
|
patch_score = (q @ k.transpose(-2, -1)) * self.scale
|
|
|
|
patch_score = patch_score.softmax(dim=-1)
|
|
|
|
pos_score = pos_score.softmax(dim=-1)
|
|
|
|
|
|
|
|
gating = self.gating_param.view(1, -1, 1, 1)
|
|
|
|
attn = (1. - torch.sigmoid(gating)) * patch_score + torch.sigmoid(gating) * pos_score
|
|
|
|
attn /= attn.sum(dim=-1).unsqueeze(-1)
|
|
|
|
attn = self.attn_drop(attn)
|
|
|
|
return attn
|
|
|
|
|
|
|
|
def get_attention_map(self, x, return_map=False):
|
|
|
|
attn_map = self.get_attention(x).mean(0) # average over batch
|
|
|
|
distances = self.rel_indices.squeeze()[:, :, -1] ** .5
|
|
|
|
dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / distances.size(0)
|
|
|
|
if return_map:
|
|
|
|
return dist, attn_map
|
|
|
|
else:
|
|
|
|
return dist
|
|
|
|
|
|
|
|
def local_init(self):
|
|
|
|
self.v.weight.data.copy_(torch.eye(self.dim))
|
|
|
|
locality_distance = 1 # max(1,1/locality_strength**.5)
|
|
|
|
|
|
|
|
kernel_size = int(self.num_heads ** .5)
|
|
|
|
center = (kernel_size - 1) / 2 if kernel_size % 2 == 0 else kernel_size // 2
|
|
|
|
for h1 in range(kernel_size):
|
|
|
|
for h2 in range(kernel_size):
|
|
|
|
position = h1 + kernel_size * h2
|
|
|
|
self.pos_proj.weight.data[position, 2] = -1
|
|
|
|
self.pos_proj.weight.data[position, 1] = 2 * (h1 - center) * locality_distance
|
|
|
|
self.pos_proj.weight.data[position, 0] = 2 * (h2 - center) * locality_distance
|
|
|
|
self.pos_proj.weight.data *= self.locality_strength
|
|
|
|
|
|
|
|
def get_rel_indices(self, num_patches: int) -> torch.Tensor:
|
|
|
|
img_size = int(num_patches ** .5)
|
|
|
|
rel_indices = torch.zeros(1, num_patches, num_patches, 3)
|
|
|
|
ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1)
|
|
|
|
indx = ind.repeat(img_size, img_size)
|
|
|
|
indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1)
|
|
|
|
indd = indx ** 2 + indy ** 2
|
|
|
|
rel_indices[:, :, :, 2] = indd.unsqueeze(0)
|
|
|
|
rel_indices[:, :, :, 1] = indy.unsqueeze(0)
|
|
|
|
rel_indices[:, :, :, 0] = indx.unsqueeze(0)
|
|
|
|
device = self.qk.weight.device
|
|
|
|
return rel_indices.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
class MHSA(nn.Module):
|
|
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
|
|
|
|
super().__init__()
|
|
|
|
self.num_heads = num_heads
|
|
|
|
head_dim = dim // num_heads
|
|
|
|
self.scale = head_dim ** -0.5
|
|
|
|
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
|
|
|
|
def get_attention_map(self, x, return_map=False):
|
|
|
|
B, N, C = x.shape
|
|
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
|
|
q, k, v = qkv[0], qkv[1], qkv[2]
|
|
|
|
attn_map = (q @ k.transpose(-2, -1)) * self.scale
|
|
|
|
attn_map = attn_map.softmax(dim=-1).mean(0)
|
|
|
|
|
|
|
|
img_size = int(N ** .5)
|
|
|
|
ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1)
|
|
|
|
indx = ind.repeat(img_size, img_size)
|
|
|
|
indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1)
|
|
|
|
indd = indx ** 2 + indy ** 2
|
|
|
|
distances = indd ** .5
|
|
|
|
distances = distances.to(x.device)
|
|
|
|
|
|
|
|
dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / N
|
|
|
|
if return_map:
|
|
|
|
return dist, attn_map
|
|
|
|
else:
|
|
|
|
return dist
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
B, N, C = x.shape
|
|
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
|
|
q, k, v = qkv.unbind(0)
|
|
|
|
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
|
|
attn = self.attn_drop(attn)
|
|
|
|
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
|
|
x = self.proj(x)
|
|
|
|
x = self.proj_drop(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class Block(nn.Module):
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
|
|
|
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_gpsa=True, **kwargs):
|
|
|
|
super().__init__()
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
|
|
self.use_gpsa = use_gpsa
|
|
|
|
if self.use_gpsa:
|
|
|
|
self.attn = GPSA(
|
|
|
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, **kwargs)
|
|
|
|
else:
|
|
|
|
self.attn = MHSA(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
self.norm2 = norm_layer(dim)
|
|
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = x + self.drop_path(self.attn(self.norm1(x)))
|
|
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class ConViT(nn.Module):
|
|
|
|
""" Vision Transformer with support for patch or hybrid CNN input stage
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token',
|
|
|
|
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, drop_rate=0., attn_drop_rate=0.,
|
|
|
|
drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm,
|
|
|
|
local_up_to_layer=3, locality_strength=1., use_pos_embed=True):
|
|
|
|
super().__init__()
|
|
|
|
assert global_pool in ('', 'avg', 'token')
|
|
|
|
embed_dim *= num_heads
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.global_pool = global_pool
|
|
|
|
self.local_up_to_layer = local_up_to_layer
|
|
|
|
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
|
|
|
self.locality_strength = locality_strength
|
|
|
|
self.use_pos_embed = use_pos_embed
|
|
|
|
|
|
|
|
if hybrid_backbone is not None:
|
|
|
|
self.patch_embed = HybridEmbed(
|
|
|
|
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
|
|
|
|
else:
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
|
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
|
|
|
num_patches = self.patch_embed.num_patches
|
|
|
|
self.num_patches = num_patches
|
|
|
|
|
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
|
|
|
|
|
|
if self.use_pos_embed:
|
|
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
|
|
|
trunc_normal_(self.pos_embed, std=.02)
|
|
|
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
|
|
|
self.blocks = nn.ModuleList([
|
|
|
|
Block(
|
|
|
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
|
|
|
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
|
|
|
use_gpsa=True,
|
|
|
|
locality_strength=locality_strength)
|
|
|
|
if i < local_up_to_layer else
|
|
|
|
Block(
|
|
|
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
|
|
|
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
|
|
|
use_gpsa=False)
|
|
|
|
for i in range(depth)])
|
|
|
|
self.norm = norm_layer(embed_dim)
|
|
|
|
|
|
|
|
# Classifier head
|
|
|
|
self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')]
|
|
|
|
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
|
|
|
|
trunc_normal_(self.cls_token, std=.02)
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
for n, m in self.named_modules():
|
|
|
|
if hasattr(m, 'local_init'):
|
|
|
|
m.local_init()
|
|
|
|
|
|
|
|
def _init_weights(self, m):
|
|
|
|
if isinstance(m, nn.Linear):
|
|
|
|
trunc_normal_(m.weight, std=.02)
|
|
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
elif isinstance(m, nn.LayerNorm):
|
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def no_weight_decay(self):
|
|
|
|
return {'pos_embed', 'cls_token'}
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def group_matcher(self, coarse=False):
|
|
|
|
return dict(
|
|
|
|
stem=r'^cls_token|pos_embed|patch_embed', # stem and embed
|
|
|
|
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
|
|
|
|
)
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def set_grad_checkpointing(self, enable=True):
|
|
|
|
assert not enable, 'gradient checkpointing not supported'
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def get_classifier(self):
|
|
|
|
return self.head
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes, global_pool=None):
|
|
|
|
self.num_classes = num_classes
|
|
|
|
if global_pool is not None:
|
|
|
|
assert global_pool in ('', 'token', 'avg')
|
|
|
|
self.global_pool = global_pool
|
|
|
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
x = self.patch_embed(x)
|
|
|
|
if self.use_pos_embed:
|
|
|
|
x = x + self.pos_embed
|
|
|
|
x = self.pos_drop(x)
|
|
|
|
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
|
|
|
|
for u, blk in enumerate(self.blocks):
|
|
|
|
if u == self.local_up_to_layer:
|
|
|
|
x = torch.cat((cls_tokens, x), dim=1)
|
|
|
|
x = blk(x)
|
|
|
|
x = self.norm(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
|
|
if self.global_pool:
|
|
|
|
x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
|
|
|
|
return x if pre_logits else self.head(x)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.forward_features(x)
|
|
|
|
x = self.forward_head(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def _create_convit(variant, pretrained=False, **kwargs):
|
|
|
|
if kwargs.get('features_only', None):
|
|
|
|
raise RuntimeError('features_only not implemented for Vision Transformer models.')
|
|
|
|
|
|
|
|
return build_model_with_cfg(ConViT, variant, pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convit_tiny(pretrained=False, **kwargs):
|
|
|
|
model_args = dict(
|
|
|
|
local_up_to_layer=10, locality_strength=1.0, embed_dim=48,
|
|
|
|
num_heads=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
model = _create_convit(variant='convit_tiny', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convit_small(pretrained=False, **kwargs):
|
|
|
|
model_args = dict(
|
|
|
|
local_up_to_layer=10, locality_strength=1.0, embed_dim=48,
|
|
|
|
num_heads=9, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
model = _create_convit(variant='convit_small', pretrained=pretrained, **model_args)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def convit_base(pretrained=False, **kwargs):
|
|
|
|
model_args = dict(
|
|
|
|
local_up_to_layer=10, locality_strength=1.0, embed_dim=48,
|
|
|
|
num_heads=16, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
|
|
model = _create_convit(variant='convit_base', pretrained=pretrained, **model_args)
|
|
|
|
return model
|