pytorch-image-models/timm/layers/inplace_abn.py

88 lines
3.3 KiB

import torch
from torch import nn as nn
try:
from inplace_abn.functions import inplace_abn, inplace_abn_sync
has_iabn = True
except ImportError:
has_iabn = False
def inplace_abn(x, weight, bias, running_mean, running_var,
training=True, momentum=0.1, eps=1e-05, activation="leaky_relu", activation_param=0.01):
raise ImportError(
"Please install InplaceABN:'pip install git+https://github.com/mapillary/inplace_abn.git@v1.0.12'")
def inplace_abn_sync(**kwargs):
inplace_abn(**kwargs)
class InplaceAbn(nn.Module):
"""Activated Batch Normalization
This gathers a BatchNorm and an activation function in a single module
Parameters
----------
num_features : int
Number of feature channels in the input and output.
eps : float
Small constant to prevent numerical issues.
momentum : float
Momentum factor applied to compute running statistics.
affine : bool
If `True` apply learned scale and shift transformation after normalization.
act_layer : str or nn.Module type
Name or type of the activation functions, one of: `leaky_relu`, `elu`
act_param : float
Negative slope for the `leaky_relu` activation.
"""
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, apply_act=True,
act_layer="leaky_relu", act_param=0.01, drop_layer=None):
super(InplaceAbn, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
self.momentum = momentum
if apply_act:
if isinstance(act_layer, str):
assert act_layer in ('leaky_relu', 'elu', 'identity', '')
self.act_name = act_layer if act_layer else 'identity'
else:
# convert act layer passed as type to string
if act_layer == nn.ELU:
self.act_name = 'elu'
elif act_layer == nn.LeakyReLU:
self.act_name = 'leaky_relu'
elif act_layer is None or act_layer == nn.Identity:
self.act_name = 'identity'
else:
assert False, f'Invalid act layer {act_layer.__name__} for IABN'
else:
self.act_name = 'identity'
self.act_param = act_param
if self.affine:
self.weight = nn.Parameter(torch.ones(num_features))
self.bias = nn.Parameter(torch.zeros(num_features))
else:
self.register_parameter('weight', None)
self.register_parameter('bias', None)
self.register_buffer('running_mean', torch.zeros(num_features))
self.register_buffer('running_var', torch.ones(num_features))
self.reset_parameters()
def reset_parameters(self):
nn.init.constant_(self.running_mean, 0)
nn.init.constant_(self.running_var, 1)
if self.affine:
nn.init.constant_(self.weight, 1)
nn.init.constant_(self.bias, 0)
def forward(self, x):
output = inplace_abn(
x, self.weight, self.bias, self.running_mean, self.running_var,
self.training, self.momentum, self.eps, self.act_name, self.act_param)
if isinstance(output, tuple):
output = output[0]
return output