|
|
|
import torch
|
|
|
|
from torch import optim as optim
|
|
|
|
from timm.optim import Nadam, RMSpropTF, AdamW, RAdam, NovoGrad, NvNovoGrad, Lookahead
|
|
|
|
try:
|
|
|
|
from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD
|
|
|
|
has_apex = True
|
|
|
|
except ImportError:
|
|
|
|
has_apex = False
|
|
|
|
|
|
|
|
|
|
|
|
def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
|
|
|
|
decay = []
|
|
|
|
no_decay = []
|
|
|
|
for name, param in model.named_parameters():
|
|
|
|
if not param.requires_grad:
|
|
|
|
continue # frozen weights
|
|
|
|
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
|
|
|
|
no_decay.append(param)
|
|
|
|
else:
|
|
|
|
decay.append(param)
|
|
|
|
return [
|
|
|
|
{'params': no_decay, 'weight_decay': 0.},
|
|
|
|
{'params': decay, 'weight_decay': weight_decay}]
|
|
|
|
|
|
|
|
|
|
|
|
def create_optimizer(args, model, filter_bias_and_bn=True):
|
|
|
|
opt_lower = args.opt.lower()
|
|
|
|
weight_decay = args.weight_decay
|
|
|
|
if 'adamw' in opt_lower or 'radam' in opt_lower:
|
|
|
|
# Compensate for the way current AdamW and RAdam optimizers apply LR to the weight-decay
|
|
|
|
# I don't believe they follow the paper or original Torch7 impl which schedules weight
|
|
|
|
# decay based on the ratio of current_lr/initial_lr
|
|
|
|
weight_decay /= args.lr
|
|
|
|
if weight_decay and filter_bias_and_bn:
|
|
|
|
parameters = add_weight_decay(model, weight_decay)
|
|
|
|
weight_decay = 0.
|
|
|
|
else:
|
|
|
|
parameters = model.parameters()
|
|
|
|
|
|
|
|
if 'fused' in opt_lower:
|
|
|
|
assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers'
|
|
|
|
|
|
|
|
opt_split = opt_lower.split('_')
|
|
|
|
opt_lower = opt_split[-1]
|
|
|
|
if opt_lower == 'sgd':
|
|
|
|
optimizer = optim.SGD(
|
|
|
|
parameters, lr=args.lr, momentum=args.momentum, weight_decay=weight_decay, nesterov=True)
|
|
|
|
elif opt_lower == 'adam':
|
|
|
|
optimizer = optim.Adam(
|
|
|
|
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
|
|
|
|
elif opt_lower == 'adamw':
|
|
|
|
optimizer = AdamW(
|
|
|
|
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
|
|
|
|
elif opt_lower == 'nadam':
|
|
|
|
optimizer = Nadam(
|
|
|
|
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
|
|
|
|
elif opt_lower == 'radam':
|
|
|
|
optimizer = RAdam(
|
|
|
|
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
|
|
|
|
elif opt_lower == 'adadelta':
|
|
|
|
optimizer = optim.Adadelta(
|
|
|
|
parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
|
|
|
|
elif opt_lower == 'rmsprop':
|
|
|
|
optimizer = optim.RMSprop(
|
|
|
|
parameters, lr=args.lr, alpha=0.9, eps=args.opt_eps,
|
|
|
|
momentum=args.momentum, weight_decay=weight_decay)
|
|
|
|
elif opt_lower == 'rmsproptf':
|
|
|
|
optimizer = RMSpropTF(
|
|
|
|
parameters, lr=args.lr, alpha=0.9, eps=args.opt_eps,
|
|
|
|
momentum=args.momentum, weight_decay=weight_decay)
|
|
|
|
elif opt_lower == 'novograd':
|
|
|
|
optimizer = NovoGrad(parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
|
|
|
|
elif opt_lower == 'nvnovograd':
|
|
|
|
optimizer = NvNovoGrad(parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
|
|
|
|
elif opt_lower == 'fusedsgd':
|
|
|
|
optimizer = FusedSGD(
|
|
|
|
parameters, lr=args.lr, momentum=args.momentum, weight_decay=weight_decay, nesterov=True)
|
|
|
|
elif opt_lower == 'fusedadam':
|
|
|
|
optimizer = FusedAdam(
|
|
|
|
parameters, lr=args.lr, adam_w_mode=False, weight_decay=weight_decay, eps=args.opt_eps)
|
|
|
|
elif opt_lower == 'fusedadamw':
|
|
|
|
optimizer = FusedAdam(
|
|
|
|
parameters, lr=args.lr, adam_w_mode=True, weight_decay=weight_decay, eps=args.opt_eps)
|
|
|
|
elif opt_lower == 'fusedlamb':
|
|
|
|
optimizer = FusedLAMB(parameters, lr=args.lr, weight_decay=weight_decay, eps=args.opt_eps)
|
|
|
|
elif opt_lower == 'fusednovograd':
|
|
|
|
optimizer = FusedNovoGrad(
|
|
|
|
parameters, lr=args.lr, betas=(0.95, 0.98), weight_decay=weight_decay, eps=args.opt_eps)
|
|
|
|
else:
|
|
|
|
assert False and "Invalid optimizer"
|
|
|
|
raise ValueError
|
|
|
|
|
|
|
|
if len(opt_split) > 1:
|
|
|
|
if opt_split[0] == 'lookahead':
|
|
|
|
optimizer = Lookahead(optimizer)
|
|
|
|
|
|
|
|
return optimizer
|