|
|
|
""" Loader Factory, Fast Collate, CUDA Prefetcher
|
|
|
|
|
|
|
|
Prefetcher and Fast Collate inspired by NVIDIA APEX example at
|
|
|
|
https://github.com/NVIDIA/apex/commit/d5e2bb4bdeedd27b1dfaf5bb2b24d6c000dee9be#diff-cf86c282ff7fba81fad27a559379d5bf
|
|
|
|
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
|
|
"""
|
|
|
|
|
|
|
|
import torch.utils.data
|
|
|
|
|
|
|
|
from timm.bits import DeviceEnv
|
|
|
|
|
|
|
|
from .fetcher import Fetcher
|
|
|
|
from .prefetcher_cuda import PrefetcherCuda
|
|
|
|
from .collate import fast_collate
|
|
|
|
from .transforms_factory import create_transform
|
|
|
|
from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
from .distributed_sampler import OrderedDistributedSampler
|
|
|
|
|
|
|
|
|
|
|
|
def create_loader(
|
|
|
|
dataset,
|
|
|
|
input_size,
|
|
|
|
batch_size,
|
|
|
|
is_training=False,
|
|
|
|
dev_env=None,
|
|
|
|
no_aug=False,
|
|
|
|
re_prob=0.,
|
|
|
|
re_mode='const',
|
|
|
|
re_count=1,
|
|
|
|
re_split=False,
|
|
|
|
scale=None,
|
|
|
|
ratio=None,
|
|
|
|
hflip=0.5,
|
|
|
|
vflip=0.,
|
|
|
|
color_jitter=0.4,
|
|
|
|
auto_augment=None,
|
|
|
|
num_aug_splits=0,
|
|
|
|
interpolation='bilinear',
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN,
|
|
|
|
std=IMAGENET_DEFAULT_STD,
|
|
|
|
num_workers=1,
|
|
|
|
crop_pct=None,
|
|
|
|
collate_fn=None,
|
|
|
|
pin_memory=False,
|
|
|
|
tf_preprocessing=False,
|
|
|
|
use_multi_epochs_loader=False,
|
|
|
|
persistent_workers=True,
|
|
|
|
):
|
|
|
|
re_num_splits = 0
|
|
|
|
if re_split:
|
|
|
|
# apply RE to second half of batch if no aug split otherwise line up with aug split
|
|
|
|
re_num_splits = num_aug_splits or 2
|
|
|
|
dataset.transform = create_transform(
|
|
|
|
input_size,
|
|
|
|
is_training=is_training,
|
|
|
|
use_fetcher=True,
|
|
|
|
no_aug=no_aug,
|
|
|
|
scale=scale,
|
|
|
|
ratio=ratio,
|
|
|
|
hflip=hflip,
|
|
|
|
vflip=vflip,
|
|
|
|
color_jitter=color_jitter,
|
|
|
|
auto_augment=auto_augment,
|
|
|
|
interpolation=interpolation,
|
|
|
|
mean=mean,
|
|
|
|
std=std,
|
|
|
|
crop_pct=crop_pct,
|
|
|
|
tf_preprocessing=tf_preprocessing,
|
|
|
|
re_prob=re_prob,
|
|
|
|
re_mode=re_mode,
|
|
|
|
re_count=re_count,
|
|
|
|
re_num_splits=re_num_splits,
|
|
|
|
separate=num_aug_splits > 0,
|
|
|
|
)
|
|
|
|
|
|
|
|
if dev_env is None:
|
|
|
|
dev_env = DeviceEnv.instance()
|
|
|
|
|
|
|
|
sampler = None
|
|
|
|
if dev_env.distributed and not isinstance(dataset, torch.utils.data.IterableDataset):
|
|
|
|
if is_training:
|
|
|
|
sampler = torch.utils.data.distributed.DistributedSampler(
|
|
|
|
dataset, num_replicas=dev_env.world_size, rank=dev_env.global_rank)
|
|
|
|
else:
|
|
|
|
# This will add extra duplicate entries to result in equal num
|
|
|
|
# of samples per-process, will slightly alter validation results
|
|
|
|
sampler = OrderedDistributedSampler(dataset, num_replicas=dev_env.world_size, rank=dev_env.global_rank)
|
|
|
|
|
|
|
|
if collate_fn is None:
|
|
|
|
collate_fn = fast_collate
|
|
|
|
|
|
|
|
loader_class = torch.utils.data.DataLoader
|
|
|
|
if use_multi_epochs_loader:
|
|
|
|
loader_class = MultiEpochsDataLoader
|
|
|
|
|
|
|
|
loader_args = dict(
|
|
|
|
batch_size=batch_size,
|
|
|
|
shuffle=not isinstance(dataset, torch.utils.data.IterableDataset) and sampler is None and is_training,
|
|
|
|
num_workers=num_workers,
|
|
|
|
sampler=sampler,
|
|
|
|
collate_fn=collate_fn,
|
|
|
|
pin_memory=pin_memory,
|
|
|
|
drop_last=is_training,
|
|
|
|
persistent_workers=persistent_workers)
|
|
|
|
try:
|
|
|
|
loader = loader_class(dataset, **loader_args)
|
|
|
|
except TypeError as e:
|
|
|
|
loader_args.pop('persistent_workers') # only in Pytorch 1.7+
|
|
|
|
loader = loader_class(dataset, **loader_args)
|
|
|
|
|
|
|
|
fetcher_kwargs = dict(
|
|
|
|
mean=mean,
|
|
|
|
std=std,
|
|
|
|
re_prob=re_prob if is_training and not no_aug else 0.,
|
|
|
|
re_mode=re_mode,
|
|
|
|
re_count=re_count,
|
|
|
|
re_num_splits=re_num_splits
|
|
|
|
)
|
|
|
|
if dev_env.type_cuda:
|
|
|
|
loader = PrefetcherCuda(loader, **fetcher_kwargs)
|
|
|
|
else:
|
|
|
|
loader = Fetcher(loader, device=dev_env.device, **fetcher_kwargs)
|
|
|
|
|
|
|
|
return loader
|
|
|
|
|
|
|
|
|
|
|
|
class MultiEpochsDataLoader(torch.utils.data.DataLoader):
|
|
|
|
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
self._DataLoader__initialized = False
|
|
|
|
self.batch_sampler = _RepeatSampler(self.batch_sampler)
|
|
|
|
self._DataLoader__initialized = True
|
|
|
|
self.iterator = super().__iter__()
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.batch_sampler.sampler)
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
for i in range(len(self)):
|
|
|
|
yield next(self.iterator)
|
|
|
|
|
|
|
|
|
|
|
|
class _RepeatSampler(object):
|
|
|
|
""" Sampler that repeats forever.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
sampler (Sampler)
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, sampler):
|
|
|
|
self.sampler = sampler
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
while True:
|
|
|
|
yield from iter(self.sampler)
|