|
|
|
""" MaxVit and CoAtNet Vision Transformer - CNN Hybrids in PyTorch
|
|
|
|
|
|
|
|
This is a from-scratch implementation of both CoAtNet and MaxVit in PyTorch.
|
|
|
|
|
|
|
|
99% of the implementation was done from papers, however last minute some adjustments were made
|
|
|
|
based on the (as yet unfinished?) public code release https://github.com/google-research/maxvit
|
|
|
|
|
|
|
|
There are multiple sets of models defined for both architectures. Typically, names with a
|
|
|
|
`_rw` suffix are my own original configs prior to referencing https://github.com/google-research/maxvit.
|
|
|
|
These configs work well and appear to be a bit faster / lower resource than the paper.
|
|
|
|
|
|
|
|
The models without extra prefix / suffix' (coatnet_0_224, maxvit_tiny_224, etc), are intended to
|
|
|
|
match paper, BUT, without any official pretrained weights it's difficult to confirm a 100% match.
|
|
|
|
|
|
|
|
Papers:
|
|
|
|
|
|
|
|
MaxViT: Multi-Axis Vision Transformer - https://arxiv.org/abs/2204.01697
|
|
|
|
@article{tu2022maxvit,
|
|
|
|
title={MaxViT: Multi-Axis Vision Transformer},
|
|
|
|
author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao},
|
|
|
|
journal={ECCV},
|
|
|
|
year={2022},
|
|
|
|
}
|
|
|
|
|
|
|
|
CoAtNet: Marrying Convolution and Attention for All Data Sizes - https://arxiv.org/abs/2106.04803
|
|
|
|
@article{DBLP:journals/corr/abs-2106-04803,
|
|
|
|
author = {Zihang Dai and Hanxiao Liu and Quoc V. Le and Mingxing Tan},
|
|
|
|
title = {CoAtNet: Marrying Convolution and Attention for All Data Sizes},
|
|
|
|
journal = {CoRR},
|
|
|
|
volume = {abs/2106.04803},
|
|
|
|
year = {2021}
|
|
|
|
}
|
|
|
|
|
|
|
|
Hacked together by / Copyright 2022, Ross Wightman
|
|
|
|
"""
|
|
|
|
|
|
|
|
import math
|
|
|
|
from collections import OrderedDict
|
|
|
|
from dataclasses import dataclass, replace
|
|
|
|
from functools import partial
|
|
|
|
from typing import Callable, Optional, Union, Tuple, List
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch import nn
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
from timm.layers import Mlp, ConvMlp, DropPath, LayerNorm, ClassifierHead, NormMlpClassifierHead
|
|
|
|
from timm.layers import create_attn, get_act_layer, get_norm_layer, get_norm_act_layer, create_conv2d, create_pool2d
|
|
|
|
from timm.layers import trunc_normal_tf_, to_2tuple, extend_tuple, make_divisible, _assert
|
|
|
|
from timm.layers import RelPosMlp, RelPosBias, RelPosBiasTf
|
|
|
|
from ._builder import build_model_with_cfg
|
|
|
|
from ._features_fx import register_notrace_function
|
|
|
|
from ._manipulate import named_apply, checkpoint_seq
|
|
|
|
from ._pretrained import generate_default_cfgs
|
|
|
|
from ._registry import register_model
|
|
|
|
|
|
|
|
__all__ = ['MaxxVitCfg', 'MaxxVitConvCfg', 'MaxxVitTransformerCfg', 'MaxxVit']
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class MaxxVitTransformerCfg:
|
|
|
|
dim_head: int = 32
|
|
|
|
head_first: bool = True # head ordering in qkv channel dim
|
|
|
|
expand_ratio: float = 4.0
|
|
|
|
expand_first: bool = True
|
|
|
|
shortcut_bias: bool = True
|
|
|
|
attn_bias: bool = True
|
|
|
|
attn_drop: float = 0.
|
|
|
|
proj_drop: float = 0.
|
|
|
|
pool_type: str = 'avg2'
|
|
|
|
rel_pos_type: str = 'bias'
|
|
|
|
rel_pos_dim: int = 512 # for relative position types w/ MLP
|
|
|
|
partition_ratio: int = 32
|
|
|
|
window_size: Optional[Tuple[int, int]] = None
|
|
|
|
grid_size: Optional[Tuple[int, int]] = None
|
|
|
|
no_block_attn: bool = False # disable window block attention for maxvit (ie only grid)
|
|
|
|
use_nchw_attn: bool = False # for MaxViT variants (not used for CoAt), keep tensors in NCHW order
|
|
|
|
init_values: Optional[float] = None
|
|
|
|
act_layer: str = 'gelu'
|
|
|
|
norm_layer: str = 'layernorm2d'
|
|
|
|
norm_layer_cl: str = 'layernorm'
|
|
|
|
norm_eps: float = 1e-6
|
|
|
|
|
|
|
|
def __post_init__(self):
|
|
|
|
if self.grid_size is not None:
|
|
|
|
self.grid_size = to_2tuple(self.grid_size)
|
|
|
|
if self.window_size is not None:
|
|
|
|
self.window_size = to_2tuple(self.window_size)
|
|
|
|
if self.grid_size is None:
|
|
|
|
self.grid_size = self.window_size
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class MaxxVitConvCfg:
|
|
|
|
block_type: str = 'mbconv'
|
|
|
|
expand_ratio: float = 4.0
|
|
|
|
expand_output: bool = True # calculate expansion channels from output (vs input chs)
|
|
|
|
kernel_size: int = 3
|
|
|
|
group_size: int = 1 # 1 == depthwise
|
|
|
|
pre_norm_act: bool = False # activation after pre-norm
|
|
|
|
output_bias: bool = True # bias for shortcut + final 1x1 projection conv
|
|
|
|
stride_mode: str = 'dw' # stride done via one of 'pool', '1x1', 'dw'
|
|
|
|
pool_type: str = 'avg2'
|
|
|
|
downsample_pool_type: str = 'avg2'
|
|
|
|
padding: str = ''
|
|
|
|
attn_early: bool = False # apply attn between conv2 and norm2, instead of after norm2
|
|
|
|
attn_layer: str = 'se'
|
|
|
|
attn_act_layer: str = 'silu'
|
|
|
|
attn_ratio: float = 0.25
|
|
|
|
init_values: Optional[float] = 1e-6 # for ConvNeXt block, ignored by MBConv
|
|
|
|
act_layer: str = 'gelu'
|
|
|
|
norm_layer: str = ''
|
|
|
|
norm_layer_cl: str = ''
|
|
|
|
norm_eps: Optional[float] = None
|
|
|
|
|
|
|
|
def __post_init__(self):
|
|
|
|
# mbconv vs convnext blocks have different defaults, set in post_init to avoid explicit config args
|
|
|
|
assert self.block_type in ('mbconv', 'convnext')
|
|
|
|
use_mbconv = self.block_type == 'mbconv'
|
|
|
|
if not self.norm_layer:
|
|
|
|
self.norm_layer = 'batchnorm2d' if use_mbconv else 'layernorm2d'
|
|
|
|
if not self.norm_layer_cl and not use_mbconv:
|
|
|
|
self.norm_layer_cl = 'layernorm'
|
|
|
|
if self.norm_eps is None:
|
|
|
|
self.norm_eps = 1e-5 if use_mbconv else 1e-6
|
|
|
|
self.downsample_pool_type = self.downsample_pool_type or self.pool_type
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class MaxxVitCfg:
|
|
|
|
embed_dim: Tuple[int, ...] = (96, 192, 384, 768)
|
|
|
|
depths: Tuple[int, ...] = (2, 3, 5, 2)
|
|
|
|
block_type: Tuple[Union[str, Tuple[str, ...]], ...] = ('C', 'C', 'T', 'T')
|
|
|
|
stem_width: Union[int, Tuple[int, int]] = 64
|
|
|
|
stem_bias: bool = False
|
|
|
|
conv_cfg: MaxxVitConvCfg = MaxxVitConvCfg()
|
|
|
|
transformer_cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg()
|
|
|
|
head_hidden_size: int = None
|
|
|
|
weight_init: str = 'vit_eff'
|
|
|
|
|
|
|
|
|
|
|
|
class Attention2d(nn.Module):
|
|
|
|
""" multi-head attention for 2D NCHW tensors"""
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dim: int,
|
|
|
|
dim_out: Optional[int] = None,
|
|
|
|
dim_head: int = 32,
|
|
|
|
bias: bool = True,
|
|
|
|
expand_first: bool = True,
|
|
|
|
head_first: bool = True,
|
|
|
|
rel_pos_cls: Callable = None,
|
|
|
|
attn_drop: float = 0.,
|
|
|
|
proj_drop: float = 0.
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
dim_out = dim_out or dim
|
|
|
|
dim_attn = dim_out if expand_first else dim
|
|
|
|
self.num_heads = dim_attn // dim_head
|
|
|
|
self.dim_head = dim_head
|
|
|
|
self.head_first = head_first
|
|
|
|
self.scale = dim_head ** -0.5
|
|
|
|
|
|
|
|
self.qkv = nn.Conv2d(dim, dim_attn * 3, 1, bias=bias)
|
|
|
|
self.rel_pos = rel_pos_cls(num_heads=self.num_heads) if rel_pos_cls else None
|
|
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
|
|
self.proj = nn.Conv2d(dim_attn, dim_out, 1, bias=bias)
|
|
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
|
|
|
|
def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None):
|
|
|
|
B, C, H, W = x.shape
|
|
|
|
|
|
|
|
if self.head_first:
|
|
|
|
q, k, v = self.qkv(x).view(B, self.num_heads, self.dim_head * 3, -1).chunk(3, dim=2)
|
|
|
|
else:
|
|
|
|
q, k, v = self.qkv(x).reshape(B, 3, self.num_heads, self.dim_head, -1).unbind(1)
|
|
|
|
|
|
|
|
attn = (q.transpose(-2, -1) @ k) * self.scale
|
|
|
|
if self.rel_pos is not None:
|
|
|
|
attn = self.rel_pos(attn)
|
|
|
|
elif shared_rel_pos is not None:
|
|
|
|
attn = attn + shared_rel_pos
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
|
|
attn = self.attn_drop(attn)
|
|
|
|
|
|
|
|
x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W)
|
|
|
|
x = self.proj(x)
|
|
|
|
x = self.proj_drop(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class AttentionCl(nn.Module):
|
|
|
|
""" Channels-last multi-head attention (B, ..., C) """
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dim: int,
|
|
|
|
dim_out: Optional[int] = None,
|
|
|
|
dim_head: int = 32,
|
|
|
|
bias: bool = True,
|
|
|
|
expand_first: bool = True,
|
|
|
|
head_first: bool = True,
|
|
|
|
rel_pos_cls: Callable = None,
|
|
|
|
attn_drop: float = 0.,
|
|
|
|
proj_drop: float = 0.
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
dim_out = dim_out or dim
|
|
|
|
dim_attn = dim_out if expand_first and dim_out > dim else dim
|
|
|
|
assert dim_attn % dim_head == 0, 'attn dim should be divisible by head_dim'
|
|
|
|
self.num_heads = dim_attn // dim_head
|
|
|
|
self.dim_head = dim_head
|
|
|
|
self.head_first = head_first
|
|
|
|
self.scale = dim_head ** -0.5
|
|
|
|
|
|
|
|
self.qkv = nn.Linear(dim, dim_attn * 3, bias=bias)
|
|
|
|
self.rel_pos = rel_pos_cls(num_heads=self.num_heads) if rel_pos_cls else None
|
|
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
|
|
self.proj = nn.Linear(dim_attn, dim_out, bias=bias)
|
|
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
|
|
|
|
def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None):
|
|
|
|
B = x.shape[0]
|
|
|
|
restore_shape = x.shape[:-1]
|
|
|
|
|
|
|
|
if self.head_first:
|
|
|
|
q, k, v = self.qkv(x).view(B, -1, self.num_heads, self.dim_head * 3).transpose(1, 2).chunk(3, dim=3)
|
|
|
|
else:
|
|
|
|
q, k, v = self.qkv(x).reshape(B, -1, 3, self.num_heads, self.dim_head).transpose(1, 3).unbind(2)
|
|
|
|
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
|
|
if self.rel_pos is not None:
|
|
|
|
attn = self.rel_pos(attn, shared_rel_pos=shared_rel_pos)
|
|
|
|
elif shared_rel_pos is not None:
|
|
|
|
attn = attn + shared_rel_pos
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
|
|
attn = self.attn_drop(attn)
|
|
|
|
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(restore_shape + (-1,))
|
|
|
|
x = self.proj(x)
|
|
|
|
x = self.proj_drop(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class LayerScale(nn.Module):
|
|
|
|
def __init__(self, dim, init_values=1e-5, inplace=False):
|
|
|
|
super().__init__()
|
|
|
|
self.inplace = inplace
|
|
|
|
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
gamma = self.gamma
|
|
|
|
return x.mul_(gamma) if self.inplace else x * gamma
|
|
|
|
|
|
|
|
|
|
|
|
class LayerScale2d(nn.Module):
|
|
|
|
def __init__(self, dim, init_values=1e-5, inplace=False):
|
|
|
|
super().__init__()
|
|
|
|
self.inplace = inplace
|
|
|
|
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
gamma = self.gamma.view(1, -1, 1, 1)
|
|
|
|
return x.mul_(gamma) if self.inplace else x * gamma
|
|
|
|
|
|
|
|
|
|
|
|
class Downsample2d(nn.Module):
|
|
|
|
""" A downsample pooling module supporting several maxpool and avgpool modes
|
|
|
|
* 'max' - MaxPool2d w/ kernel_size 3, stride 2, padding 1
|
|
|
|
* 'max2' - MaxPool2d w/ kernel_size = stride = 2
|
|
|
|
* 'avg' - AvgPool2d w/ kernel_size 3, stride 2, padding 1
|
|
|
|
* 'avg2' - AvgPool2d w/ kernel_size = stride = 2
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dim: int,
|
|
|
|
dim_out: int,
|
|
|
|
pool_type: str = 'avg2',
|
|
|
|
padding: str = '',
|
|
|
|
bias: bool = True,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
assert pool_type in ('max', 'max2', 'avg', 'avg2')
|
|
|
|
if pool_type == 'max':
|
|
|
|
self.pool = create_pool2d('max', kernel_size=3, stride=2, padding=padding or 1)
|
|
|
|
elif pool_type == 'max2':
|
|
|
|
self.pool = create_pool2d('max', 2, padding=padding or 0) # kernel_size == stride == 2
|
|
|
|
elif pool_type == 'avg':
|
|
|
|
self.pool = create_pool2d(
|
|
|
|
'avg', kernel_size=3, stride=2, count_include_pad=False, padding=padding or 1)
|
|
|
|
else:
|
|
|
|
self.pool = create_pool2d('avg', 2, padding=padding or 0)
|
|
|
|
|
|
|
|
if dim != dim_out:
|
|
|
|
self.expand = nn.Conv2d(dim, dim_out, 1, bias=bias)
|
|
|
|
else:
|
|
|
|
self.expand = nn.Identity()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.pool(x) # spatial downsample
|
|
|
|
x = self.expand(x) # expand chs
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def _init_transformer(module, name, scheme=''):
|
|
|
|
if isinstance(module, (nn.Conv2d, nn.Linear)):
|
|
|
|
if scheme == 'normal':
|
|
|
|
nn.init.normal_(module.weight, std=.02)
|
|
|
|
if module.bias is not None:
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
elif scheme == 'trunc_normal':
|
|
|
|
trunc_normal_tf_(module.weight, std=.02)
|
|
|
|
if module.bias is not None:
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
elif scheme == 'xavier_normal':
|
|
|
|
nn.init.xavier_normal_(module.weight)
|
|
|
|
if module.bias is not None:
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
else:
|
|
|
|
# vit like
|
|
|
|
nn.init.xavier_uniform_(module.weight)
|
|
|
|
if module.bias is not None:
|
|
|
|
if 'mlp' in name:
|
|
|
|
nn.init.normal_(module.bias, std=1e-6)
|
|
|
|
else:
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
|
|
|
|
|
|
|
|
class TransformerBlock2d(nn.Module):
|
|
|
|
""" Transformer block with 2D downsampling
|
|
|
|
'2D' NCHW tensor layout
|
|
|
|
|
|
|
|
Some gains can be seen on GPU using a 1D / CL block, BUT w/ the need to switch back/forth to NCHW
|
|
|
|
for spatial pooling, the benefit is minimal so ended up using just this variant for CoAt configs.
|
|
|
|
|
|
|
|
This impl was faster on TPU w/ PT XLA than the 1D experiment.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dim: int,
|
|
|
|
dim_out: int,
|
|
|
|
stride: int = 1,
|
|
|
|
rel_pos_cls: Callable = None,
|
|
|
|
cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(),
|
|
|
|
drop_path: float = 0.,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps)
|
|
|
|
act_layer = get_act_layer(cfg.act_layer)
|
|
|
|
|
|
|
|
if stride == 2:
|
|
|
|
self.shortcut = Downsample2d(dim, dim_out, pool_type=cfg.pool_type, bias=cfg.shortcut_bias)
|
|
|
|
self.norm1 = nn.Sequential(OrderedDict([
|
|
|
|
('norm', norm_layer(dim)),
|
|
|
|
('down', Downsample2d(dim, dim, pool_type=cfg.pool_type)),
|
|
|
|
]))
|
|
|
|
else:
|
|
|
|
assert dim == dim_out
|
|
|
|
self.shortcut = nn.Identity()
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
|
|
|
|
|
|
self.attn = Attention2d(
|
|
|
|
dim,
|
|
|
|
dim_out,
|
|
|
|
dim_head=cfg.dim_head,
|
|
|
|
expand_first=cfg.expand_first,
|
|
|
|
bias=cfg.attn_bias,
|
|
|
|
rel_pos_cls=rel_pos_cls,
|
|
|
|
attn_drop=cfg.attn_drop,
|
|
|
|
proj_drop=cfg.proj_drop
|
|
|
|
)
|
|
|
|
self.ls1 = LayerScale2d(dim_out, init_values=cfg.init_values) if cfg.init_values else nn.Identity()
|
|
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
self.norm2 = norm_layer(dim_out)
|
|
|
|
self.mlp = ConvMlp(
|
|
|
|
in_features=dim_out,
|
|
|
|
hidden_features=int(dim_out * cfg.expand_ratio),
|
|
|
|
act_layer=act_layer,
|
|
|
|
drop=cfg.proj_drop)
|
|
|
|
self.ls2 = LayerScale2d(dim_out, init_values=cfg.init_values) if cfg.init_values else nn.Identity()
|
|
|
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
def init_weights(self, scheme=''):
|
|
|
|
named_apply(partial(_init_transformer, scheme=scheme), self)
|
|
|
|
|
|
|
|
def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None):
|
|
|
|
x = self.shortcut(x) + self.drop_path1(self.ls1(self.attn(self.norm1(x), shared_rel_pos=shared_rel_pos)))
|
|
|
|
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def _init_conv(module, name, scheme=''):
|
|
|
|
if isinstance(module, nn.Conv2d):
|
|
|
|
if scheme == 'normal':
|
|
|
|
nn.init.normal_(module.weight, std=.02)
|
|
|
|
if module.bias is not None:
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
elif scheme == 'trunc_normal':
|
|
|
|
trunc_normal_tf_(module.weight, std=.02)
|
|
|
|
if module.bias is not None:
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
elif scheme == 'xavier_normal':
|
|
|
|
nn.init.xavier_normal_(module.weight)
|
|
|
|
if module.bias is not None:
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
else:
|
|
|
|
# efficientnet like
|
|
|
|
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
|
|
|
|
fan_out //= module.groups
|
|
|
|
nn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out))
|
|
|
|
if module.bias is not None:
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
|
|
|
|
|
|
|
|
def num_groups(group_size, channels):
|
|
|
|
if not group_size: # 0 or None
|
|
|
|
return 1 # normal conv with 1 group
|
|
|
|
else:
|
|
|
|
# NOTE group_size == 1 -> depthwise conv
|
|
|
|
assert channels % group_size == 0
|
|
|
|
return channels // group_size
|
|
|
|
|
|
|
|
|
|
|
|
class MbConvBlock(nn.Module):
|
|
|
|
""" Pre-Norm Conv Block - 1x1 - kxk - 1x1, w/ inverted bottleneck (expand)
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
in_chs: int,
|
|
|
|
out_chs: int,
|
|
|
|
stride: int = 1,
|
|
|
|
dilation: Tuple[int, int] = (1, 1),
|
|
|
|
cfg: MaxxVitConvCfg = MaxxVitConvCfg(),
|
|
|
|
drop_path: float = 0.
|
|
|
|
):
|
|
|
|
super(MbConvBlock, self).__init__()
|
|
|
|
norm_act_layer = partial(get_norm_act_layer(cfg.norm_layer, cfg.act_layer), eps=cfg.norm_eps)
|
|
|
|
mid_chs = make_divisible((out_chs if cfg.expand_output else in_chs) * cfg.expand_ratio)
|
|
|
|
groups = num_groups(cfg.group_size, mid_chs)
|
|
|
|
|
|
|
|
if stride == 2:
|
|
|
|
self.shortcut = Downsample2d(
|
|
|
|
in_chs, out_chs, pool_type=cfg.pool_type, bias=cfg.output_bias, padding=cfg.padding)
|
|
|
|
else:
|
|
|
|
self.shortcut = nn.Identity()
|
|
|
|
|
|
|
|
assert cfg.stride_mode in ('pool', '1x1', 'dw')
|
|
|
|
stride_pool, stride_1, stride_2 = 1, 1, 1
|
|
|
|
if cfg.stride_mode == 'pool':
|
|
|
|
# NOTE this is not described in paper, experiment to find faster option that doesn't stride in 1x1
|
|
|
|
stride_pool, dilation_2 = stride, dilation[1]
|
|
|
|
# FIXME handle dilation of avg pool
|
|
|
|
elif cfg.stride_mode == '1x1':
|
|
|
|
# NOTE I don't like this option described in paper, 1x1 w/ stride throws info away
|
|
|
|
stride_1, dilation_2 = stride, dilation[1]
|
|
|
|
else:
|
|
|
|
stride_2, dilation_2 = stride, dilation[0]
|
|
|
|
|
|
|
|
self.pre_norm = norm_act_layer(in_chs, apply_act=cfg.pre_norm_act)
|
|
|
|
if stride_pool > 1:
|
|
|
|
self.down = Downsample2d(in_chs, in_chs, pool_type=cfg.downsample_pool_type, padding=cfg.padding)
|
|
|
|
else:
|
|
|
|
self.down = nn.Identity()
|
|
|
|
self.conv1_1x1 = create_conv2d(in_chs, mid_chs, 1, stride=stride_1)
|
|
|
|
self.norm1 = norm_act_layer(mid_chs)
|
|
|
|
|
|
|
|
self.conv2_kxk = create_conv2d(
|
|
|
|
mid_chs, mid_chs, cfg.kernel_size,
|
|
|
|
stride=stride_2, dilation=dilation_2, groups=groups, padding=cfg.padding)
|
|
|
|
|
|
|
|
attn_kwargs = {}
|
|
|
|
if isinstance(cfg.attn_layer, str):
|
|
|
|
if cfg.attn_layer == 'se' or cfg.attn_layer == 'eca':
|
|
|
|
attn_kwargs['act_layer'] = cfg.attn_act_layer
|
|
|
|
attn_kwargs['rd_channels'] = int(cfg.attn_ratio * (out_chs if cfg.expand_output else mid_chs))
|
|
|
|
|
|
|
|
# two different orderings for SE and norm2 (due to some weights and trials using SE before norm2)
|
|
|
|
if cfg.attn_early:
|
|
|
|
self.se_early = create_attn(cfg.attn_layer, mid_chs, **attn_kwargs)
|
|
|
|
self.norm2 = norm_act_layer(mid_chs)
|
|
|
|
self.se = None
|
|
|
|
else:
|
|
|
|
self.se_early = None
|
|
|
|
self.norm2 = norm_act_layer(mid_chs)
|
|
|
|
self.se = create_attn(cfg.attn_layer, mid_chs, **attn_kwargs)
|
|
|
|
|
|
|
|
self.conv3_1x1 = create_conv2d(mid_chs, out_chs, 1, bias=cfg.output_bias)
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
def init_weights(self, scheme=''):
|
|
|
|
named_apply(partial(_init_conv, scheme=scheme), self)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
shortcut = self.shortcut(x)
|
|
|
|
x = self.pre_norm(x)
|
|
|
|
x = self.down(x)
|
|
|
|
|
|
|
|
# 1x1 expansion conv & norm-act
|
|
|
|
x = self.conv1_1x1(x)
|
|
|
|
x = self.norm1(x)
|
|
|
|
|
|
|
|
# depthwise / grouped 3x3 conv w/ SE (or other) channel attention & norm-act
|
|
|
|
x = self.conv2_kxk(x)
|
|
|
|
if self.se_early is not None:
|
|
|
|
x = self.se_early(x)
|
|
|
|
x = self.norm2(x)
|
|
|
|
if self.se is not None:
|
|
|
|
x = self.se(x)
|
|
|
|
|
|
|
|
# 1x1 linear projection to output width
|
|
|
|
x = self.conv3_1x1(x)
|
|
|
|
x = self.drop_path(x) + shortcut
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class ConvNeXtBlock(nn.Module):
|
|
|
|
""" ConvNeXt Block
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
in_chs: int,
|
|
|
|
out_chs: Optional[int] = None,
|
|
|
|
kernel_size: int = 7,
|
|
|
|
stride: int = 1,
|
|
|
|
dilation: Tuple[int, int] = (1, 1),
|
|
|
|
cfg: MaxxVitConvCfg = MaxxVitConvCfg(),
|
|
|
|
conv_mlp: bool = True,
|
|
|
|
drop_path: float = 0.
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
out_chs = out_chs or in_chs
|
|
|
|
act_layer = get_act_layer(cfg.act_layer)
|
|
|
|
if conv_mlp:
|
|
|
|
norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps)
|
|
|
|
mlp_layer = ConvMlp
|
|
|
|
else:
|
|
|
|
assert 'layernorm' in cfg.norm_layer
|
|
|
|
norm_layer = LayerNorm
|
|
|
|
mlp_layer = Mlp
|
|
|
|
self.use_conv_mlp = conv_mlp
|
|
|
|
|
|
|
|
if stride == 2:
|
|
|
|
self.shortcut = Downsample2d(in_chs, out_chs)
|
|
|
|
elif in_chs != out_chs:
|
|
|
|
self.shortcut = nn.Conv2d(in_chs, out_chs, kernel_size=1, bias=cfg.output_bias)
|
|
|
|
else:
|
|
|
|
self.shortcut = nn.Identity()
|
|
|
|
|
|
|
|
assert cfg.stride_mode in ('pool', 'dw')
|
|
|
|
stride_pool, stride_dw = 1, 1
|
|
|
|
# FIXME handle dilation?
|
|
|
|
if cfg.stride_mode == 'pool':
|
|
|
|
stride_pool = stride
|
|
|
|
else:
|
|
|
|
stride_dw = stride
|
|
|
|
|
|
|
|
if stride_pool == 2:
|
|
|
|
self.down = Downsample2d(in_chs, in_chs, pool_type=cfg.downsample_pool_type)
|
|
|
|
else:
|
|
|
|
self.down = nn.Identity()
|
|
|
|
|
|
|
|
self.conv_dw = create_conv2d(
|
|
|
|
in_chs, out_chs, kernel_size=kernel_size, stride=stride_dw, dilation=dilation[1],
|
|
|
|
depthwise=True, bias=cfg.output_bias)
|
|
|
|
self.norm = norm_layer(out_chs)
|
|
|
|
self.mlp = mlp_layer(out_chs, int(cfg.expand_ratio * out_chs), bias=cfg.output_bias, act_layer=act_layer)
|
|
|
|
if conv_mlp:
|
|
|
|
self.ls = LayerScale2d(out_chs, cfg.init_values) if cfg.init_values else nn.Identity()
|
|
|
|
else:
|
|
|
|
self.ls = LayerScale(out_chs, cfg.init_values) if cfg.init_values else nn.Identity()
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
shortcut = self.shortcut(x)
|
|
|
|
x = self.down(x)
|
|
|
|
x = self.conv_dw(x)
|
|
|
|
if self.use_conv_mlp:
|
|
|
|
x = self.norm(x)
|
|
|
|
x = self.mlp(x)
|
|
|
|
x = self.ls(x)
|
|
|
|
else:
|
|
|
|
x = x.permute(0, 2, 3, 1)
|
|
|
|
x = self.norm(x)
|
|
|
|
x = self.mlp(x)
|
|
|
|
x = self.ls(x)
|
|
|
|
x = x.permute(0, 3, 1, 2)
|
|
|
|
|
|
|
|
x = self.drop_path(x) + shortcut
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def window_partition(x, window_size: List[int]):
|
|
|
|
B, H, W, C = x.shape
|
|
|
|
_assert(H % window_size[0] == 0, f'height ({H}) must be divisible by window ({window_size[0]})')
|
|
|
|
_assert(W % window_size[1] == 0, '')
|
|
|
|
x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C)
|
|
|
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C)
|
|
|
|
return windows
|
|
|
|
|
|
|
|
|
|
|
|
@register_notrace_function # reason: int argument is a Proxy
|
|
|
|
def window_reverse(windows, window_size: List[int], img_size: List[int]):
|
|
|
|
H, W = img_size
|
|
|
|
C = windows.shape[-1]
|
|
|
|
x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C)
|
|
|
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def grid_partition(x, grid_size: List[int]):
|
|
|
|
B, H, W, C = x.shape
|
|
|
|
_assert(H % grid_size[0] == 0, f'height {H} must be divisible by grid {grid_size[0]}')
|
|
|
|
_assert(W % grid_size[1] == 0, '')
|
|
|
|
x = x.view(B, grid_size[0], H // grid_size[0], grid_size[1], W // grid_size[1], C)
|
|
|
|
windows = x.permute(0, 2, 4, 1, 3, 5).contiguous().view(-1, grid_size[0], grid_size[1], C)
|
|
|
|
return windows
|
|
|
|
|
|
|
|
|
|
|
|
@register_notrace_function # reason: int argument is a Proxy
|
|
|
|
def grid_reverse(windows, grid_size: List[int], img_size: List[int]):
|
|
|
|
H, W = img_size
|
|
|
|
C = windows.shape[-1]
|
|
|
|
x = windows.view(-1, H // grid_size[0], W // grid_size[1], grid_size[0], grid_size[1], C)
|
|
|
|
x = x.permute(0, 3, 1, 4, 2, 5).contiguous().view(-1, H, W, C)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def get_rel_pos_cls(cfg: MaxxVitTransformerCfg, window_size):
|
|
|
|
rel_pos_cls = None
|
|
|
|
if cfg.rel_pos_type == 'mlp':
|
|
|
|
rel_pos_cls = partial(RelPosMlp, window_size=window_size, hidden_dim=cfg.rel_pos_dim)
|
|
|
|
elif cfg.rel_pos_type == 'bias':
|
|
|
|
rel_pos_cls = partial(RelPosBias, window_size=window_size)
|
|
|
|
elif cfg.rel_pos_type == 'bias_tf':
|
|
|
|
rel_pos_cls = partial(RelPosBiasTf, window_size=window_size)
|
|
|
|
return rel_pos_cls
|
|
|
|
|
|
|
|
|
|
|
|
class PartitionAttentionCl(nn.Module):
|
|
|
|
""" Grid or Block partition + Attn + FFN.
|
|
|
|
NxC 'channels last' tensor layout.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dim: int,
|
|
|
|
partition_type: str = 'block',
|
|
|
|
cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(),
|
|
|
|
drop_path: float = 0.,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
norm_layer = partial(get_norm_layer(cfg.norm_layer_cl), eps=cfg.norm_eps) # NOTE this block is channels-last
|
|
|
|
act_layer = get_act_layer(cfg.act_layer)
|
|
|
|
|
|
|
|
self.partition_block = partition_type == 'block'
|
|
|
|
self.partition_size = to_2tuple(cfg.window_size if self.partition_block else cfg.grid_size)
|
|
|
|
rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size)
|
|
|
|
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
|
|
self.attn = AttentionCl(
|
|
|
|
dim,
|
|
|
|
dim,
|
|
|
|
dim_head=cfg.dim_head,
|
|
|
|
bias=cfg.attn_bias,
|
|
|
|
head_first=cfg.head_first,
|
|
|
|
rel_pos_cls=rel_pos_cls,
|
|
|
|
attn_drop=cfg.attn_drop,
|
|
|
|
proj_drop=cfg.proj_drop,
|
|
|
|
)
|
|
|
|
self.ls1 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity()
|
|
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
self.norm2 = norm_layer(dim)
|
|
|
|
self.mlp = Mlp(
|
|
|
|
in_features=dim,
|
|
|
|
hidden_features=int(dim * cfg.expand_ratio),
|
|
|
|
act_layer=act_layer,
|
|
|
|
drop=cfg.proj_drop)
|
|
|
|
self.ls2 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity()
|
|
|
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
def _partition_attn(self, x):
|
|
|
|
img_size = x.shape[1:3]
|
|
|
|
if self.partition_block:
|
|
|
|
partitioned = window_partition(x, self.partition_size)
|
|
|
|
else:
|
|
|
|
partitioned = grid_partition(x, self.partition_size)
|
|
|
|
|
|
|
|
partitioned = self.attn(partitioned)
|
|
|
|
|
|
|
|
if self.partition_block:
|
|
|
|
x = window_reverse(partitioned, self.partition_size, img_size)
|
|
|
|
else:
|
|
|
|
x = grid_reverse(partitioned, self.partition_size, img_size)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x))))
|
|
|
|
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class ParallelPartitionAttention(nn.Module):
|
|
|
|
""" Experimental. Grid and Block partition + single FFN
|
|
|
|
NxC tensor layout.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dim: int,
|
|
|
|
cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(),
|
|
|
|
drop_path: float = 0.,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
assert dim % 2 == 0
|
|
|
|
norm_layer = partial(get_norm_layer(cfg.norm_layer_cl), eps=cfg.norm_eps) # NOTE this block is channels-last
|
|
|
|
act_layer = get_act_layer(cfg.act_layer)
|
|
|
|
|
|
|
|
assert cfg.window_size == cfg.grid_size
|
|
|
|
self.partition_size = to_2tuple(cfg.window_size)
|
|
|
|
rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size)
|
|
|
|
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
|
|
self.attn_block = AttentionCl(
|
|
|
|
dim,
|
|
|
|
dim // 2,
|
|
|
|
dim_head=cfg.dim_head,
|
|
|
|
bias=cfg.attn_bias,
|
|
|
|
head_first=cfg.head_first,
|
|
|
|
rel_pos_cls=rel_pos_cls,
|
|
|
|
attn_drop=cfg.attn_drop,
|
|
|
|
proj_drop=cfg.proj_drop,
|
|
|
|
)
|
|
|
|
self.attn_grid = AttentionCl(
|
|
|
|
dim,
|
|
|
|
dim // 2,
|
|
|
|
dim_head=cfg.dim_head,
|
|
|
|
bias=cfg.attn_bias,
|
|
|
|
head_first=cfg.head_first,
|
|
|
|
rel_pos_cls=rel_pos_cls,
|
|
|
|
attn_drop=cfg.attn_drop,
|
|
|
|
proj_drop=cfg.proj_drop,
|
|
|
|
)
|
|
|
|
self.ls1 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity()
|
|
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
self.norm2 = norm_layer(dim)
|
|
|
|
self.mlp = Mlp(
|
|
|
|
in_features=dim,
|
|
|
|
hidden_features=int(dim * cfg.expand_ratio),
|
|
|
|
out_features=dim,
|
|
|
|
act_layer=act_layer,
|
|
|
|
drop=cfg.proj_drop)
|
|
|
|
self.ls2 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity()
|
|
|
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
def _partition_attn(self, x):
|
|
|
|
img_size = x.shape[1:3]
|
|
|
|
|
|
|
|
partitioned_block = window_partition(x, self.partition_size)
|
|
|
|
partitioned_block = self.attn_block(partitioned_block)
|
|
|
|
x_window = window_reverse(partitioned_block, self.partition_size, img_size)
|
|
|
|
|
|
|
|
partitioned_grid = grid_partition(x, self.partition_size)
|
|
|
|
partitioned_grid = self.attn_grid(partitioned_grid)
|
|
|
|
x_grid = grid_reverse(partitioned_grid, self.partition_size, img_size)
|
|
|
|
|
|
|
|
return torch.cat([x_window, x_grid], dim=-1)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x))))
|
|
|
|
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def window_partition_nchw(x, window_size: List[int]):
|
|
|
|
B, C, H, W = x.shape
|
|
|
|
_assert(H % window_size[0] == 0, f'height ({H}) must be divisible by window ({window_size[0]})')
|
|
|
|
_assert(W % window_size[1] == 0, '')
|
|
|
|
x = x.view(B, C, H // window_size[0], window_size[0], W // window_size[1], window_size[1])
|
|
|
|
windows = x.permute(0, 2, 4, 1, 3, 5).contiguous().view(-1, C, window_size[0], window_size[1])
|
|
|
|
return windows
|
|
|
|
|
|
|
|
|
|
|
|
@register_notrace_function # reason: int argument is a Proxy
|
|
|
|
def window_reverse_nchw(windows, window_size: List[int], img_size: List[int]):
|
|
|
|
H, W = img_size
|
|
|
|
C = windows.shape[1]
|
|
|
|
x = windows.view(-1, H // window_size[0], W // window_size[1], C, window_size[0], window_size[1])
|
|
|
|
x = x.permute(0, 3, 1, 4, 2, 5).contiguous().view(-1, C, H, W)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def grid_partition_nchw(x, grid_size: List[int]):
|
|
|
|
B, C, H, W = x.shape
|
|
|
|
_assert(H % grid_size[0] == 0, f'height {H} must be divisible by grid {grid_size[0]}')
|
|
|
|
_assert(W % grid_size[1] == 0, '')
|
|
|
|
x = x.view(B, C, grid_size[0], H // grid_size[0], grid_size[1], W // grid_size[1])
|
|
|
|
windows = x.permute(0, 3, 5, 1, 2, 4).contiguous().view(-1, C, grid_size[0], grid_size[1])
|
|
|
|
return windows
|
|
|
|
|
|
|
|
|
|
|
|
@register_notrace_function # reason: int argument is a Proxy
|
|
|
|
def grid_reverse_nchw(windows, grid_size: List[int], img_size: List[int]):
|
|
|
|
H, W = img_size
|
|
|
|
C = windows.shape[1]
|
|
|
|
x = windows.view(-1, H // grid_size[0], W // grid_size[1], C, grid_size[0], grid_size[1])
|
|
|
|
x = x.permute(0, 3, 4, 1, 5, 2).contiguous().view(-1, C, H, W)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class PartitionAttention2d(nn.Module):
|
|
|
|
""" Grid or Block partition + Attn + FFN
|
|
|
|
|
|
|
|
'2D' NCHW tensor layout.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dim: int,
|
|
|
|
partition_type: str = 'block',
|
|
|
|
cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(),
|
|
|
|
drop_path: float = 0.,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) # NOTE this block is channels-last
|
|
|
|
act_layer = get_act_layer(cfg.act_layer)
|
|
|
|
|
|
|
|
self.partition_block = partition_type == 'block'
|
|
|
|
self.partition_size = to_2tuple(cfg.window_size if self.partition_block else cfg.grid_size)
|
|
|
|
rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size)
|
|
|
|
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
|
|
self.attn = Attention2d(
|
|
|
|
dim,
|
|
|
|
dim,
|
|
|
|
dim_head=cfg.dim_head,
|
|
|
|
bias=cfg.attn_bias,
|
|
|
|
head_first=cfg.head_first,
|
|
|
|
rel_pos_cls=rel_pos_cls,
|
|
|
|
attn_drop=cfg.attn_drop,
|
|
|
|
proj_drop=cfg.proj_drop,
|
|
|
|
)
|
|
|
|
self.ls1 = LayerScale2d(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity()
|
|
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
self.norm2 = norm_layer(dim)
|
|
|
|
self.mlp = ConvMlp(
|
|
|
|
in_features=dim,
|
|
|
|
hidden_features=int(dim * cfg.expand_ratio),
|
|
|
|
act_layer=act_layer,
|
|
|
|
drop=cfg.proj_drop)
|
|
|
|
self.ls2 = LayerScale2d(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity()
|
|
|
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
def _partition_attn(self, x):
|
|
|
|
img_size = x.shape[-2:]
|
|
|
|
if self.partition_block:
|
|
|
|
partitioned = window_partition_nchw(x, self.partition_size)
|
|
|
|
else:
|
|
|
|
partitioned = grid_partition_nchw(x, self.partition_size)
|
|
|
|
|
|
|
|
partitioned = self.attn(partitioned)
|
|
|
|
|
|
|
|
if self.partition_block:
|
|
|
|
x = window_reverse_nchw(partitioned, self.partition_size, img_size)
|
|
|
|
else:
|
|
|
|
x = grid_reverse_nchw(partitioned, self.partition_size, img_size)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x))))
|
|
|
|
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class MaxxVitBlock(nn.Module):
|
|
|
|
""" MaxVit conv, window partition + FFN , grid partition + FFN
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dim: int,
|
|
|
|
dim_out: int,
|
|
|
|
stride: int = 1,
|
|
|
|
conv_cfg: MaxxVitConvCfg = MaxxVitConvCfg(),
|
|
|
|
transformer_cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(),
|
|
|
|
drop_path: float = 0.,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
self.nchw_attn = transformer_cfg.use_nchw_attn
|
|
|
|
|
|
|
|
conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock
|
|
|
|
self.conv = conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path)
|
|
|
|
|
|
|
|
attn_kwargs = dict(dim=dim_out, cfg=transformer_cfg, drop_path=drop_path)
|
|
|
|
partition_layer = PartitionAttention2d if self.nchw_attn else PartitionAttentionCl
|
|
|
|
self.attn_block = None if transformer_cfg.no_block_attn else partition_layer(**attn_kwargs)
|
|
|
|
self.attn_grid = partition_layer(partition_type='grid', **attn_kwargs)
|
|
|
|
|
|
|
|
def init_weights(self, scheme=''):
|
|
|
|
if self.attn_block is not None:
|
|
|
|
named_apply(partial(_init_transformer, scheme=scheme), self.attn_block)
|
|
|
|
named_apply(partial(_init_transformer, scheme=scheme), self.attn_grid)
|
|
|
|
named_apply(partial(_init_conv, scheme=scheme), self.conv)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
# NCHW format
|
|
|
|
x = self.conv(x)
|
|
|
|
|
|
|
|
if not self.nchw_attn:
|
|
|
|
x = x.permute(0, 2, 3, 1) # to NHWC (channels-last)
|
|
|
|
if self.attn_block is not None:
|
|
|
|
x = self.attn_block(x)
|
|
|
|
x = self.attn_grid(x)
|
|
|
|
if not self.nchw_attn:
|
|
|
|
x = x.permute(0, 3, 1, 2) # back to NCHW
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class ParallelMaxxVitBlock(nn.Module):
|
|
|
|
""" MaxVit block with parallel cat(window + grid), one FF
|
|
|
|
Experimental timm block.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dim,
|
|
|
|
dim_out,
|
|
|
|
stride=1,
|
|
|
|
num_conv=2,
|
|
|
|
conv_cfg: MaxxVitConvCfg = MaxxVitConvCfg(),
|
|
|
|
transformer_cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(),
|
|
|
|
drop_path=0.,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock
|
|
|
|
if num_conv > 1:
|
|
|
|
convs = [conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path)]
|
|
|
|
convs += [conv_cls(dim_out, dim_out, cfg=conv_cfg, drop_path=drop_path)] * (num_conv - 1)
|
|
|
|
self.conv = nn.Sequential(*convs)
|
|
|
|
else:
|
|
|
|
self.conv = conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path)
|
|
|
|
self.attn = ParallelPartitionAttention(dim=dim_out, cfg=transformer_cfg, drop_path=drop_path)
|
|
|
|
|
|
|
|
def init_weights(self, scheme=''):
|
|
|
|
named_apply(partial(_init_transformer, scheme=scheme), self.attn)
|
|
|
|
named_apply(partial(_init_conv, scheme=scheme), self.conv)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.conv(x)
|
|
|
|
x = x.permute(0, 2, 3, 1)
|
|
|
|
x = self.attn(x)
|
|
|
|
x = x.permute(0, 3, 1, 2)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class MaxxVitStage(nn.Module):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
in_chs: int,
|
|
|
|
out_chs: int,
|
|
|
|
stride: int = 2,
|
|
|
|
depth: int = 4,
|
|
|
|
feat_size: Tuple[int, int] = (14, 14),
|
|
|
|
block_types: Union[str, Tuple[str]] = 'C',
|
|
|
|
transformer_cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(),
|
|
|
|
conv_cfg: MaxxVitConvCfg = MaxxVitConvCfg(),
|
|
|
|
drop_path: Union[float, List[float]] = 0.,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
self.grad_checkpointing = False
|
|
|
|
|
|
|
|
block_types = extend_tuple(block_types, depth)
|
|
|
|
blocks = []
|
|
|
|
for i, t in enumerate(block_types):
|
|
|
|
block_stride = stride if i == 0 else 1
|
|
|
|
assert t in ('C', 'T', 'M', 'PM')
|
|
|
|
if t == 'C':
|
|
|
|
conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock
|
|
|
|
blocks += [conv_cls(
|
|
|
|
in_chs,
|
|
|
|
out_chs,
|
|
|
|
stride=block_stride,
|
|
|
|
cfg=conv_cfg,
|
|
|
|
drop_path=drop_path[i],
|
|
|
|
)]
|
|
|
|
elif t == 'T':
|
|
|
|
rel_pos_cls = get_rel_pos_cls(transformer_cfg, feat_size)
|
|
|
|
blocks += [TransformerBlock2d(
|
|
|
|
in_chs,
|
|
|
|
out_chs,
|
|
|
|
stride=block_stride,
|
|
|
|
rel_pos_cls=rel_pos_cls,
|
|
|
|
cfg=transformer_cfg,
|
|
|
|
drop_path=drop_path[i],
|
|
|
|
)]
|
|
|
|
elif t == 'M':
|
|
|
|
blocks += [MaxxVitBlock(
|
|
|
|
in_chs,
|
|
|
|
out_chs,
|
|
|
|
stride=block_stride,
|
|
|
|
conv_cfg=conv_cfg,
|
|
|
|
transformer_cfg=transformer_cfg,
|
|
|
|
drop_path=drop_path[i],
|
|
|
|
)]
|
|
|
|
elif t == 'PM':
|
|
|
|
blocks += [ParallelMaxxVitBlock(
|
|
|
|
in_chs,
|
|
|
|
out_chs,
|
|
|
|
stride=block_stride,
|
|
|
|
conv_cfg=conv_cfg,
|
|
|
|
transformer_cfg=transformer_cfg,
|
|
|
|
drop_path=drop_path[i],
|
|
|
|
)]
|
|
|
|
in_chs = out_chs
|
|
|
|
self.blocks = nn.Sequential(*blocks)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
if self.grad_checkpointing and not torch.jit.is_scripting():
|
|
|
|
x = checkpoint_seq(self.blocks, x)
|
|
|
|
else:
|
|
|
|
x = self.blocks(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class Stem(nn.Module):
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
in_chs: int,
|
|
|
|
out_chs: int,
|
|
|
|
kernel_size: int = 3,
|
|
|
|
padding: str = '',
|
|
|
|
bias: bool = False,
|
|
|
|
act_layer: str = 'gelu',
|
|
|
|
norm_layer: str = 'batchnorm2d',
|
|
|
|
norm_eps: float = 1e-5,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
if not isinstance(out_chs, (list, tuple)):
|
|
|
|
out_chs = to_2tuple(out_chs)
|
|
|
|
|
|
|
|
norm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps)
|
|
|
|
self.out_chs = out_chs[-1]
|
|
|
|
self.stride = 2
|
|
|
|
|
|
|
|
self.conv1 = create_conv2d(in_chs, out_chs[0], kernel_size, stride=2, padding=padding, bias=bias)
|
|
|
|
self.norm1 = norm_act_layer(out_chs[0])
|
|
|
|
self.conv2 = create_conv2d(out_chs[0], out_chs[1], kernel_size, stride=1, padding=padding, bias=bias)
|
|
|
|
|
|
|
|
def init_weights(self, scheme=''):
|
|
|
|
named_apply(partial(_init_conv, scheme=scheme), self)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.norm1(x)
|
|
|
|
x = self.conv2(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def cfg_window_size(cfg: MaxxVitTransformerCfg, img_size: Tuple[int, int]):
|
|
|
|
if cfg.window_size is not None:
|
|
|
|
assert cfg.grid_size
|
|
|
|
return cfg
|
|
|
|
partition_size = img_size[0] // cfg.partition_ratio, img_size[1] // cfg.partition_ratio
|
|
|
|
cfg = replace(cfg, window_size=partition_size, grid_size=partition_size)
|
|
|
|
return cfg
|
|
|
|
|
|
|
|
|
|
|
|
def _overlay_kwargs(cfg: MaxxVitCfg, **kwargs):
|
|
|
|
transformer_kwargs = {}
|
|
|
|
conv_kwargs = {}
|
|
|
|
base_kwargs = {}
|
|
|
|
for k, v in kwargs.items():
|
|
|
|
if k.startswith('transformer_'):
|
|
|
|
transformer_kwargs[k.replace('transformer_', '')] = v
|
|
|
|
elif k.startswith('conv_'):
|
|
|
|
conv_kwargs[k.replace('conv_', '')] = v
|
|
|
|
else:
|
|
|
|
base_kwargs[k] = v
|
|
|
|
cfg = replace(
|
|
|
|
cfg,
|
|
|
|
transformer_cfg=replace(cfg.transformer_cfg, **transformer_kwargs),
|
|
|
|
conv_cfg=replace(cfg.conv_cfg, **conv_kwargs),
|
|
|
|
**base_kwargs
|
|
|
|
)
|
|
|
|
return cfg
|
|
|
|
|
|
|
|
|
|
|
|
class MaxxVit(nn.Module):
|
|
|
|
""" CoaTNet + MaxVit base model.
|
|
|
|
|
|
|
|
Highly configurable for different block compositions, tensor layouts, pooling types.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
cfg: MaxxVitCfg,
|
|
|
|
img_size: Union[int, Tuple[int, int]] = 224,
|
|
|
|
in_chans: int = 3,
|
|
|
|
num_classes: int = 1000,
|
|
|
|
global_pool: str = 'avg',
|
|
|
|
drop_rate: float = 0.,
|
|
|
|
drop_path_rate: float = 0.,
|
|
|
|
**kwargs,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
img_size = to_2tuple(img_size)
|
|
|
|
if kwargs:
|
|
|
|
cfg = _overlay_kwargs(cfg, **kwargs)
|
|
|
|
transformer_cfg = cfg_window_size(cfg.transformer_cfg, img_size)
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.global_pool = global_pool
|
|
|
|
self.num_features = self.embed_dim = cfg.embed_dim[-1]
|
|
|
|
self.drop_rate = drop_rate
|
|
|
|
self.grad_checkpointing = False
|
|
|
|
self.feature_info = []
|
|
|
|
|
|
|
|
self.stem = Stem(
|
|
|
|
in_chs=in_chans,
|
|
|
|
out_chs=cfg.stem_width,
|
|
|
|
padding=cfg.conv_cfg.padding,
|
|
|
|
bias=cfg.stem_bias,
|
|
|
|
act_layer=cfg.conv_cfg.act_layer,
|
|
|
|
norm_layer=cfg.conv_cfg.norm_layer,
|
|
|
|
norm_eps=cfg.conv_cfg.norm_eps,
|
|
|
|
)
|
|
|
|
stride = self.stem.stride
|
|
|
|
self.feature_info += [dict(num_chs=self.stem.out_chs, reduction=2, module='stem')]
|
|
|
|
feat_size = tuple([i // s for i, s in zip(img_size, to_2tuple(stride))])
|
|
|
|
|
|
|
|
num_stages = len(cfg.embed_dim)
|
|
|
|
assert len(cfg.depths) == num_stages
|
|
|
|
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)]
|
|
|
|
in_chs = self.stem.out_chs
|
|
|
|
stages = []
|
|
|
|
for i in range(num_stages):
|
|
|
|
stage_stride = 2
|
|
|
|
out_chs = cfg.embed_dim[i]
|
|
|
|
feat_size = tuple([(r - 1) // stage_stride + 1 for r in feat_size])
|
|
|
|
stages += [MaxxVitStage(
|
|
|
|
in_chs,
|
|
|
|
out_chs,
|
|
|
|
depth=cfg.depths[i],
|
|
|
|
block_types=cfg.block_type[i],
|
|
|
|
conv_cfg=cfg.conv_cfg,
|
|
|
|
transformer_cfg=transformer_cfg,
|
|
|
|
feat_size=feat_size,
|
|
|
|
drop_path=dpr[i],
|
|
|
|
)]
|
|
|
|
stride *= stage_stride
|
|
|
|
in_chs = out_chs
|
|
|
|
self.feature_info += [dict(num_chs=out_chs, reduction=stride, module=f'stages.{i}')]
|
|
|
|
self.stages = nn.Sequential(*stages)
|
|
|
|
|
|
|
|
final_norm_layer = partial(get_norm_layer(cfg.transformer_cfg.norm_layer), eps=cfg.transformer_cfg.norm_eps)
|
|
|
|
self.head_hidden_size = cfg.head_hidden_size
|
|
|
|
if self.head_hidden_size:
|
|
|
|
self.norm = nn.Identity()
|
|
|
|
self.head = NormMlpClassifierHead(
|
|
|
|
self.num_features,
|
|
|
|
num_classes,
|
|
|
|
hidden_size=self.head_hidden_size,
|
|
|
|
pool_type=global_pool,
|
|
|
|
drop_rate=drop_rate,
|
|
|
|
norm_layer=final_norm_layer,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
# standard classifier head w/ norm, pooling, fc classifier
|
|
|
|
self.norm = final_norm_layer(self.num_features)
|
|
|
|
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate)
|
|
|
|
|
|
|
|
# Weight init (default PyTorch init works well for AdamW if scheme not set)
|
|
|
|
assert cfg.weight_init in ('', 'normal', 'trunc_normal', 'xavier_normal', 'vit_eff')
|
|
|
|
if cfg.weight_init:
|
|
|
|
named_apply(partial(self._init_weights, scheme=cfg.weight_init), self)
|
|
|
|
|
|
|
|
def _init_weights(self, module, name, scheme=''):
|
|
|
|
if hasattr(module, 'init_weights'):
|
|
|
|
try:
|
|
|
|
module.init_weights(scheme=scheme)
|
|
|
|
except TypeError:
|
|
|
|
module.init_weights()
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def no_weight_decay(self):
|
|
|
|
return {
|
|
|
|
k for k, _ in self.named_parameters()
|
|
|
|
if any(n in k for n in ["relative_position_bias_table", "rel_pos.mlp"])}
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def group_matcher(self, coarse=False):
|
|
|
|
matcher = dict(
|
|
|
|
stem=r'^stem', # stem and embed
|
|
|
|
blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))]
|
|
|
|
)
|
|
|
|
return matcher
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def set_grad_checkpointing(self, enable=True):
|
|
|
|
for s in self.stages:
|
|
|
|
s.grad_checkpointing = enable
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def get_classifier(self):
|
|
|
|
return self.head.fc
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes, global_pool=None):
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.head.reset(num_classes, global_pool)
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
x = self.stem(x)
|
|
|
|
x = self.stages(x)
|
|
|
|
x = self.norm(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
|
|
return self.head(x, pre_logits=pre_logits)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.forward_features(x)
|
|
|
|
x = self.forward_head(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def _rw_coat_cfg(
|
|
|
|
stride_mode='pool',
|
|
|
|
pool_type='avg2',
|
|
|
|
conv_output_bias=False,
|
|
|
|
conv_attn_early=False,
|
|
|
|
conv_attn_act_layer='relu',
|
|
|
|
conv_norm_layer='',
|
|
|
|
transformer_shortcut_bias=True,
|
|
|
|
transformer_norm_layer='layernorm2d',
|
|
|
|
transformer_norm_layer_cl='layernorm',
|
|
|
|
init_values=None,
|
|
|
|
rel_pos_type='bias',
|
|
|
|
rel_pos_dim=512,
|
|
|
|
):
|
|
|
|
# 'RW' timm variant models were created and trained before seeing https://github.com/google-research/maxvit
|
|
|
|
# Common differences for initial timm models:
|
|
|
|
# - pre-norm layer in MZBConv included an activation after norm
|
|
|
|
# - mbconv expansion calculated from input instead of output chs
|
|
|
|
# - mbconv shortcut and final 1x1 conv did not have a bias
|
|
|
|
# - SE act layer was relu, not silu
|
|
|
|
# - mbconv uses silu in timm, not gelu
|
|
|
|
# - expansion in attention block done via output proj, not input proj
|
|
|
|
# Variable differences (evolved over training initial models):
|
|
|
|
# - avg pool with kernel_size=2 favoured downsampling (instead of maxpool for coat)
|
|
|
|
# - SE attention was between conv2 and norm/act
|
|
|
|
# - default to avg pool for mbconv downsample instead of 1x1 or dw conv
|
|
|
|
# - transformer block shortcut has no bias
|
|
|
|
return dict(
|
|
|
|
conv_cfg=MaxxVitConvCfg(
|
|
|
|
stride_mode=stride_mode,
|
|
|
|
pool_type=pool_type,
|
|
|
|
pre_norm_act=True,
|
|
|
|
expand_output=False,
|
|
|
|
output_bias=conv_output_bias,
|
|
|
|
attn_early=conv_attn_early,
|
|
|
|
attn_act_layer=conv_attn_act_layer,
|
|
|
|
act_layer='silu',
|
|
|
|
norm_layer=conv_norm_layer,
|
|
|
|
),
|
|
|
|
transformer_cfg=MaxxVitTransformerCfg(
|
|
|
|
expand_first=False,
|
|
|
|
shortcut_bias=transformer_shortcut_bias,
|
|
|
|
pool_type=pool_type,
|
|
|
|
init_values=init_values,
|
|
|
|
norm_layer=transformer_norm_layer,
|
|
|
|
norm_layer_cl=transformer_norm_layer_cl,
|
|
|
|
rel_pos_type=rel_pos_type,
|
|
|
|
rel_pos_dim=rel_pos_dim,
|
|
|
|
),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def _rw_max_cfg(
|
|
|
|
stride_mode='dw',
|
|
|
|
pool_type='avg2',
|
|
|
|
conv_output_bias=False,
|
|
|
|
conv_attn_ratio=1 / 16,
|
|
|
|
conv_norm_layer='',
|
|
|
|
transformer_norm_layer='layernorm2d',
|
|
|
|
transformer_norm_layer_cl='layernorm',
|
|
|
|
window_size=None,
|
|
|
|
dim_head=32,
|
|
|
|
init_values=None,
|
|
|
|
rel_pos_type='bias',
|
|
|
|
rel_pos_dim=512,
|
|
|
|
):
|
|
|
|
# 'RW' timm variant models were created and trained before seeing https://github.com/google-research/maxvit
|
|
|
|
# Differences of initial timm models:
|
|
|
|
# - mbconv expansion calculated from input instead of output chs
|
|
|
|
# - mbconv shortcut and final 1x1 conv did not have a bias
|
|
|
|
# - mbconv uses silu in timm, not gelu
|
|
|
|
# - expansion in attention block done via output proj, not input proj
|
|
|
|
return dict(
|
|
|
|
conv_cfg=MaxxVitConvCfg(
|
|
|
|
stride_mode=stride_mode,
|
|
|
|
pool_type=pool_type,
|
|
|
|
expand_output=False,
|
|
|
|
output_bias=conv_output_bias,
|
|
|
|
attn_ratio=conv_attn_ratio,
|
|
|
|
act_layer='silu',
|
|
|
|
norm_layer=conv_norm_layer,
|
|
|
|
),
|
|
|
|
transformer_cfg=MaxxVitTransformerCfg(
|
|
|
|
expand_first=False,
|
|
|
|
pool_type=pool_type,
|
|
|
|
dim_head=dim_head,
|
|
|
|
window_size=window_size,
|
|
|
|
init_values=init_values,
|
|
|
|
norm_layer=transformer_norm_layer,
|
|
|
|
norm_layer_cl=transformer_norm_layer_cl,
|
|
|
|
rel_pos_type=rel_pos_type,
|
|
|
|
rel_pos_dim=rel_pos_dim,
|
|
|
|
),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def _next_cfg(
|
|
|
|
stride_mode='dw',
|
|
|
|
pool_type='avg2',
|
|
|
|
conv_norm_layer='layernorm2d',
|
|
|
|
conv_norm_layer_cl='layernorm',
|
|
|
|
transformer_norm_layer='layernorm2d',
|
|
|
|
transformer_norm_layer_cl='layernorm',
|
|
|
|
window_size=None,
|
|
|
|
no_block_attn=False,
|
|
|
|
init_values=1e-6,
|
|
|
|
rel_pos_type='mlp', # MLP by default for maxxvit
|
|
|
|
rel_pos_dim=512,
|
|
|
|
):
|
|
|
|
# For experimental models with convnext instead of mbconv
|
|
|
|
init_values = to_2tuple(init_values)
|
|
|
|
return dict(
|
|
|
|
conv_cfg=MaxxVitConvCfg(
|
|
|
|
block_type='convnext',
|
|
|
|
stride_mode=stride_mode,
|
|
|
|
pool_type=pool_type,
|
|
|
|
expand_output=False,
|
|
|
|
init_values=init_values[0],
|
|
|
|
norm_layer=conv_norm_layer,
|
|
|
|
norm_layer_cl=conv_norm_layer_cl,
|
|
|
|
),
|
|
|
|
transformer_cfg=MaxxVitTransformerCfg(
|
|
|
|
expand_first=False,
|
|
|
|
pool_type=pool_type,
|
|
|
|
window_size=window_size,
|
|
|
|
no_block_attn=no_block_attn, # enabled for MaxxViT-V2
|
|
|
|
init_values=init_values[1],
|
|
|
|
norm_layer=transformer_norm_layer,
|
|
|
|
norm_layer_cl=transformer_norm_layer_cl,
|
|
|
|
rel_pos_type=rel_pos_type,
|
|
|
|
rel_pos_dim=rel_pos_dim,
|
|
|
|
),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def _tf_cfg():
|
|
|
|
return dict(
|
|
|
|
conv_cfg=MaxxVitConvCfg(
|
|
|
|
norm_eps=1e-3,
|
|
|
|
act_layer='gelu_tanh',
|
|
|
|
padding='same',
|
|
|
|
),
|
|
|
|
transformer_cfg=MaxxVitTransformerCfg(
|
|
|
|
norm_eps=1e-5,
|
|
|
|
act_layer='gelu_tanh',
|
|
|
|
head_first=False, # heads are interleaved (q_nh, q_hdim, k_nh, q_hdim, ....)
|
|
|
|
rel_pos_type='bias_tf',
|
|
|
|
),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
model_cfgs = dict(
|
|
|
|
# timm specific CoAtNet configs
|
|
|
|
coatnet_pico_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
depths=(2, 3, 5, 2),
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_max_cfg( # using newer max defaults here
|
|
|
|
conv_output_bias=True,
|
|
|
|
conv_attn_ratio=0.25,
|
|
|
|
),
|
|
|
|
),
|
|
|
|
coatnet_nano_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
depths=(3, 4, 6, 3),
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_max_cfg( # using newer max defaults here
|
|
|
|
stride_mode='pool',
|
|
|
|
conv_output_bias=True,
|
|
|
|
conv_attn_ratio=0.25,
|
|
|
|
),
|
|
|
|
),
|
|
|
|
coatnet_0_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(96, 192, 384, 768),
|
|
|
|
depths=(2, 3, 7, 2), # deeper than paper '0' model
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_coat_cfg(
|
|
|
|
conv_attn_early=True,
|
|
|
|
transformer_shortcut_bias=False,
|
|
|
|
),
|
|
|
|
),
|
|
|
|
coatnet_1_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(96, 192, 384, 768),
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_coat_cfg(
|
|
|
|
stride_mode='dw',
|
|
|
|
conv_attn_early=True,
|
|
|
|
transformer_shortcut_bias=False,
|
|
|
|
)
|
|
|
|
),
|
|
|
|
coatnet_2_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(128, 256, 512, 1024),
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
stem_width=(64, 128),
|
|
|
|
**_rw_coat_cfg(
|
|
|
|
stride_mode='dw',
|
|
|
|
conv_attn_act_layer='silu',
|
|
|
|
#init_values=1e-6,
|
|
|
|
),
|
|
|
|
),
|
|
|
|
coatnet_3_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(192, 384, 768, 1536),
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
stem_width=(96, 192),
|
|
|
|
**_rw_coat_cfg(
|
|
|
|
stride_mode='dw',
|
|
|
|
conv_attn_act_layer='silu',
|
|
|
|
init_values=1e-6,
|
|
|
|
),
|
|
|
|
),
|
|
|
|
|
|
|
|
# Experimental CoAtNet configs w/ ImageNet-1k train (different norm layers, MLP rel-pos)
|
|
|
|
coatnet_bn_0_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(96, 192, 384, 768),
|
|
|
|
depths=(2, 3, 7, 2), # deeper than paper '0' model
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_coat_cfg(
|
|
|
|
stride_mode='dw',
|
|
|
|
conv_attn_early=True,
|
|
|
|
transformer_shortcut_bias=False,
|
|
|
|
transformer_norm_layer='batchnorm2d',
|
|
|
|
)
|
|
|
|
),
|
|
|
|
coatnet_rmlp_nano_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
depths=(3, 4, 6, 3),
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_max_cfg(
|
|
|
|
conv_output_bias=True,
|
|
|
|
conv_attn_ratio=0.25,
|
|
|
|
rel_pos_type='mlp',
|
|
|
|
rel_pos_dim=384,
|
|
|
|
),
|
|
|
|
),
|
|
|
|
coatnet_rmlp_0_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(96, 192, 384, 768),
|
|
|
|
depths=(2, 3, 7, 2), # deeper than paper '0' model
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_coat_cfg(
|
|
|
|
stride_mode='dw',
|
|
|
|
rel_pos_type='mlp',
|
|
|
|
),
|
|
|
|
),
|
|
|
|
coatnet_rmlp_1_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(96, 192, 384, 768),
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_coat_cfg(
|
|
|
|
pool_type='max',
|
|
|
|
conv_attn_early=True,
|
|
|
|
transformer_shortcut_bias=False,
|
|
|
|
rel_pos_type='mlp',
|
|
|
|
rel_pos_dim=384, # was supposed to be 512, woops
|
|
|
|
),
|
|
|
|
),
|
|
|
|
coatnet_rmlp_1_rw2=MaxxVitCfg(
|
|
|
|
embed_dim=(96, 192, 384, 768),
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_coat_cfg(
|
|
|
|
stride_mode='dw',
|
|
|
|
rel_pos_type='mlp',
|
|
|
|
rel_pos_dim=512, # was supposed to be 512, woops
|
|
|
|
),
|
|
|
|
),
|
|
|
|
coatnet_rmlp_2_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(128, 256, 512, 1024),
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
stem_width=(64, 128),
|
|
|
|
**_rw_coat_cfg(
|
|
|
|
stride_mode='dw',
|
|
|
|
conv_attn_act_layer='silu',
|
|
|
|
init_values=1e-6,
|
|
|
|
rel_pos_type='mlp'
|
|
|
|
),
|
|
|
|
),
|
|
|
|
coatnet_rmlp_3_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(192, 384, 768, 1536),
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
stem_width=(96, 192),
|
|
|
|
**_rw_coat_cfg(
|
|
|
|
stride_mode='dw',
|
|
|
|
conv_attn_act_layer='silu',
|
|
|
|
init_values=1e-6,
|
|
|
|
rel_pos_type='mlp'
|
|
|
|
),
|
|
|
|
),
|
|
|
|
|
|
|
|
coatnet_nano_cc=MaxxVitCfg(
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
depths=(3, 4, 6, 3),
|
|
|
|
stem_width=(32, 64),
|
|
|
|
block_type=('C', 'C', ('C', 'T'), ('C', 'T')),
|
|
|
|
**_rw_coat_cfg(),
|
|
|
|
),
|
|
|
|
coatnext_nano_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
depths=(3, 4, 6, 3),
|
|
|
|
stem_width=(32, 64),
|
|
|
|
weight_init='normal',
|
|
|
|
**_next_cfg(
|
|
|
|
rel_pos_type='bias',
|
|
|
|
init_values=(1e-5, None)
|
|
|
|
),
|
|
|
|
),
|
|
|
|
|
|
|
|
# Trying to be like the CoAtNet paper configs
|
|
|
|
coatnet_0=MaxxVitCfg(
|
|
|
|
embed_dim=(96, 192, 384, 768),
|
|
|
|
depths=(2, 3, 5, 2),
|
|
|
|
stem_width=64,
|
|
|
|
head_hidden_size=768,
|
|
|
|
),
|
|
|
|
coatnet_1=MaxxVitCfg(
|
|
|
|
embed_dim=(96, 192, 384, 768),
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
stem_width=64,
|
|
|
|
head_hidden_size=768,
|
|
|
|
),
|
|
|
|
coatnet_2=MaxxVitCfg(
|
|
|
|
embed_dim=(128, 256, 512, 1024),
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
stem_width=128,
|
|
|
|
head_hidden_size=1024,
|
|
|
|
),
|
|
|
|
coatnet_3=MaxxVitCfg(
|
|
|
|
embed_dim=(192, 384, 768, 1536),
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
stem_width=192,
|
|
|
|
head_hidden_size=1536,
|
|
|
|
),
|
|
|
|
coatnet_4=MaxxVitCfg(
|
|
|
|
embed_dim=(192, 384, 768, 1536),
|
|
|
|
depths=(2, 12, 28, 2),
|
|
|
|
stem_width=192,
|
|
|
|
head_hidden_size=1536,
|
|
|
|
),
|
|
|
|
coatnet_5=MaxxVitCfg(
|
|
|
|
embed_dim=(256, 512, 1280, 2048),
|
|
|
|
depths=(2, 12, 28, 2),
|
|
|
|
stem_width=192,
|
|
|
|
head_hidden_size=2048,
|
|
|
|
),
|
|
|
|
|
|
|
|
# Experimental MaxVit configs
|
|
|
|
maxvit_pico_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(32, 64, 128, 256),
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=(24, 32),
|
|
|
|
**_rw_max_cfg(),
|
|
|
|
),
|
|
|
|
maxvit_nano_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
depths=(1, 2, 3, 1),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_max_cfg(),
|
|
|
|
),
|
|
|
|
maxvit_tiny_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_max_cfg(),
|
|
|
|
),
|
|
|
|
maxvit_tiny_pm=MaxxVitCfg(
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
block_type=('PM',) * 4,
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_max_cfg(),
|
|
|
|
),
|
|
|
|
|
|
|
|
maxvit_rmlp_pico_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(32, 64, 128, 256),
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=(24, 32),
|
|
|
|
**_rw_max_cfg(rel_pos_type='mlp'),
|
|
|
|
),
|
|
|
|
maxvit_rmlp_nano_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
depths=(1, 2, 3, 1),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_max_cfg(rel_pos_type='mlp'),
|
|
|
|
),
|
|
|
|
maxvit_rmlp_tiny_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_max_cfg(rel_pos_type='mlp'),
|
|
|
|
),
|
|
|
|
maxvit_rmlp_small_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(96, 192, 384, 768),
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_rw_max_cfg(
|
|
|
|
rel_pos_type='mlp',
|
|
|
|
init_values=1e-6,
|
|
|
|
),
|
|
|
|
),
|
|
|
|
maxvit_rmlp_base_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(96, 192, 384, 768),
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=(32, 64),
|
|
|
|
head_hidden_size=768,
|
|
|
|
**_rw_max_cfg(
|
|
|
|
rel_pos_type='mlp',
|
|
|
|
),
|
|
|
|
),
|
|
|
|
|
|
|
|
maxxvit_rmlp_nano_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
depths=(1, 2, 3, 1),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=(32, 64),
|
|
|
|
weight_init='normal',
|
|
|
|
**_next_cfg(),
|
|
|
|
),
|
|
|
|
maxxvit_rmlp_tiny_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=(32, 64),
|
|
|
|
**_next_cfg(),
|
|
|
|
),
|
|
|
|
maxxvit_rmlp_small_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(96, 192, 384, 768),
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=(48, 96),
|
|
|
|
**_next_cfg(),
|
|
|
|
),
|
|
|
|
|
|
|
|
maxxvitv2_nano_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(96, 192, 384, 768),
|
|
|
|
depths=(1, 2, 3, 1),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=(48, 96),
|
|
|
|
weight_init='normal',
|
|
|
|
**_next_cfg(
|
|
|
|
no_block_attn=True,
|
|
|
|
rel_pos_type='bias',
|
|
|
|
),
|
|
|
|
),
|
|
|
|
maxxvitv2_rmlp_base_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(128, 256, 512, 1024),
|
|
|
|
depths=(2, 6, 12, 2),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=(64, 128),
|
|
|
|
**_next_cfg(
|
|
|
|
no_block_attn=True,
|
|
|
|
),
|
|
|
|
),
|
|
|
|
maxxvitv2_rmlp_large_rw=MaxxVitCfg(
|
|
|
|
embed_dim=(160, 320, 640, 1280),
|
|
|
|
depths=(2, 6, 16, 2),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=(80, 160),
|
|
|
|
head_hidden_size=1280,
|
|
|
|
**_next_cfg(
|
|
|
|
no_block_attn=True,
|
|
|
|
),
|
|
|
|
),
|
|
|
|
|
|
|
|
# Trying to be like the MaxViT paper configs
|
|
|
|
maxvit_tiny_tf=MaxxVitCfg(
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=64,
|
|
|
|
stem_bias=True,
|
|
|
|
head_hidden_size=512,
|
|
|
|
**_tf_cfg(),
|
|
|
|
),
|
|
|
|
maxvit_small_tf=MaxxVitCfg(
|
|
|
|
embed_dim=(96, 192, 384, 768),
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=64,
|
|
|
|
stem_bias=True,
|
|
|
|
head_hidden_size=768,
|
|
|
|
**_tf_cfg(),
|
|
|
|
),
|
|
|
|
maxvit_base_tf=MaxxVitCfg(
|
|
|
|
embed_dim=(96, 192, 384, 768),
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=64,
|
|
|
|
stem_bias=True,
|
|
|
|
head_hidden_size=768,
|
|
|
|
**_tf_cfg(),
|
|
|
|
),
|
|
|
|
maxvit_large_tf=MaxxVitCfg(
|
|
|
|
embed_dim=(128, 256, 512, 1024),
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=128,
|
|
|
|
stem_bias=True,
|
|
|
|
head_hidden_size=1024,
|
|
|
|
**_tf_cfg(),
|
|
|
|
),
|
|
|
|
maxvit_xlarge_tf=MaxxVitCfg(
|
|
|
|
embed_dim=(192, 384, 768, 1536),
|
|
|
|
depths=(2, 6, 14, 2),
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
stem_width=192,
|
|
|
|
stem_bias=True,
|
|
|
|
head_hidden_size=1536,
|
|
|
|
**_tf_cfg(),
|
|
|
|
),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model: nn.Module):
|
|
|
|
model_state_dict = model.state_dict()
|
|
|
|
out_dict = {}
|
|
|
|
for k, v in state_dict.items():
|
|
|
|
if k in model_state_dict and v.ndim != model_state_dict[k].ndim and v.numel() == model_state_dict[k].numel():
|
|
|
|
# adapt between conv2d / linear layers
|
|
|
|
assert v.ndim in (2, 4)
|
|
|
|
v = v.reshape(model_state_dict[k].shape)
|
|
|
|
out_dict[k] = v
|
|
|
|
return out_dict
|
|
|
|
|
|
|
|
|
|
|
|
def _create_maxxvit(variant, cfg_variant=None, pretrained=False, **kwargs):
|
|
|
|
if cfg_variant is None:
|
|
|
|
if variant in model_cfgs:
|
|
|
|
cfg_variant = variant
|
|
|
|
else:
|
|
|
|
cfg_variant = '_'.join(variant.split('_')[:-1])
|
|
|
|
return build_model_with_cfg(
|
|
|
|
MaxxVit, variant, pretrained,
|
|
|
|
model_cfg=model_cfgs[cfg_variant],
|
|
|
|
feature_cfg=dict(flatten_sequential=True),
|
|
|
|
pretrained_filter_fn=checkpoint_filter_fn,
|
|
|
|
**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
|
|
|
|
'crop_pct': 0.95, 'interpolation': 'bicubic',
|
|
|
|
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
|
|
|
|
'first_conv': 'stem.conv1', 'classifier': 'head.fc',
|
|
|
|
'fixed_input_size': True,
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = generate_default_cfgs({
|
|
|
|
# timm specific CoAtNet configs, ImageNet-1k pretrain, fixed rel-pos
|
|
|
|
'coatnet_pico_rw_224.untrained': _cfg(url=''),
|
|
|
|
'coatnet_nano_rw_224.sw_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_nano_rw_224_sw-f53093b4.pth',
|
|
|
|
crop_pct=0.9),
|
|
|
|
'coatnet_0_rw_224.sw_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_0_rw_224_sw-a6439706.pth'),
|
|
|
|
'coatnet_1_rw_224.sw_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_1_rw_224_sw-5cae1ea8.pth'
|
|
|
|
),
|
|
|
|
|
|
|
|
# timm specific CoAtNet configs, ImageNet-12k pretrain w/ 1k fine-tune, fixed rel-pos
|
|
|
|
'coatnet_2_rw_224.sw_in12k_ft_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/'),
|
|
|
|
#'coatnet_3_rw_224.untrained': _cfg(url=''),
|
|
|
|
|
|
|
|
# Experimental CoAtNet configs w/ ImageNet-12k pretrain -> 1k fine-tune (different norm layers, MLP rel-pos)
|
|
|
|
'coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/'),
|
|
|
|
'coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/'),
|
|
|
|
'coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
|
|
|
|
# Experimental CoAtNet configs w/ ImageNet-1k train (different norm layers, MLP rel-pos)
|
|
|
|
'coatnet_bn_0_rw_224.sw_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_bn_0_rw_224_sw-c228e218.pth',
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD,
|
|
|
|
crop_pct=0.95),
|
|
|
|
'coatnet_rmlp_nano_rw_224.sw_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_nano_rw_224_sw-bd1d51b3.pth',
|
|
|
|
crop_pct=0.9),
|
|
|
|
'coatnet_rmlp_0_rw_224.untrained': _cfg(url=''),
|
|
|
|
'coatnet_rmlp_1_rw_224.sw_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_1_rw_224_sw-9051e6c3.pth'),
|
|
|
|
'coatnet_rmlp_2_rw_224.sw_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_2_rw_224_sw-5ccfac55.pth'),
|
|
|
|
'coatnet_rmlp_3_rw_224.untrained': _cfg(url=''),
|
|
|
|
'coatnet_nano_cc_224.untrained': _cfg(url=''),
|
|
|
|
'coatnext_nano_rw_224.sw_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnext_nano_rw_224_ad-22cb71c2.pth',
|
|
|
|
crop_pct=0.9),
|
|
|
|
|
|
|
|
# ImagenNet-12k pretrain CoAtNet
|
|
|
|
'coatnet_2_rw_224.sw_in12k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=11821),
|
|
|
|
'coatnet_3_rw_224.sw_in12k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=11821),
|
|
|
|
'coatnet_rmlp_1_rw2_224.sw_in12k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=11821),
|
|
|
|
'coatnet_rmlp_2_rw_224.sw_in12k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=11821),
|
|
|
|
|
|
|
|
# Trying to be like the CoAtNet paper configs (will adapt if 'tf' weights are ever released)
|
|
|
|
'coatnet_0_224.untrained': _cfg(url=''),
|
|
|
|
'coatnet_1_224.untrained': _cfg(url=''),
|
|
|
|
'coatnet_2_224.untrained': _cfg(url=''),
|
|
|
|
'coatnet_3_224.untrained': _cfg(url=''),
|
|
|
|
'coatnet_4_224.untrained': _cfg(url=''),
|
|
|
|
'coatnet_5_224.untrained': _cfg(url=''),
|
|
|
|
|
|
|
|
# timm specific MaxVit configs, ImageNet-1k pretrain or untrained
|
|
|
|
'maxvit_pico_rw_256.untrained': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'maxvit_nano_rw_256.sw_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_nano_rw_256_sw-fb127241.pth',
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'maxvit_tiny_rw_224.sw_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_tiny_rw_224_sw-7d0dffeb.pth'),
|
|
|
|
'maxvit_tiny_rw_256.untrained': _cfg(
|
|
|
|
url='',
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'maxvit_tiny_pm_256.untrained': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
|
|
|
# timm specific MaxVit w/ MLP rel-pos, ImageNet-1k pretrain
|
|
|
|
'maxvit_rmlp_pico_rw_256.sw_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_pico_rw_256_sw-8d82f2c6.pth',
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'maxvit_rmlp_nano_rw_256.sw_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_nano_rw_256_sw-c17bb0d6.pth',
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'maxvit_rmlp_tiny_rw_256.sw_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_tiny_rw_256_sw-bbef0ff5.pth',
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'maxvit_rmlp_small_rw_224.sw_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_small_rw_224_sw-6ef0ae4f.pth',
|
|
|
|
crop_pct=0.9,
|
|
|
|
),
|
|
|
|
'maxvit_rmlp_small_rw_256.untrained': _cfg(
|
|
|
|
url='',
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
|
|
|
# timm specific MaxVit w/ ImageNet-12k pretrain and 1k fine-tune
|
|
|
|
'maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
),
|
|
|
|
'maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
|
|
|
|
# timm specific MaxVit w/ ImageNet-12k pretrain
|
|
|
|
'maxvit_rmlp_base_rw_224.sw_in12k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=11821,
|
|
|
|
),
|
|
|
|
|
|
|
|
# timm MaxxViT configs (ConvNeXt conv blocks mixed with MaxVit transformer blocks)
|
|
|
|
'maxxvit_rmlp_nano_rw_256.sw_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxxvit_rmlp_nano_rw_256_sw-0325d459.pth',
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'maxxvit_rmlp_tiny_rw_256.untrained': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'maxxvit_rmlp_small_rw_256.sw_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxxvit_rmlp_small_rw_256_sw-37e217ff.pth',
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
|
|
|
# timm MaxxViT-V2 configs (ConvNeXt conv blocks mixed with MaxVit transformer blocks, more width, no block attn)
|
|
|
|
'maxxvitv2_nano_rw_256.sw_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
'maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/'),
|
|
|
|
'maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'maxxvitv2_rmlp_large_rw_224.untrained': _cfg(url=''),
|
|
|
|
|
|
|
|
'maxxvitv2_rmlp_base_rw_224.sw_in12k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
num_classes=11821),
|
|
|
|
|
|
|
|
# MaxViT models ported from official Tensorflow impl
|
|
|
|
'maxvit_tiny_tf_224.in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
|
|
|
|
'maxvit_tiny_tf_384.in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'maxvit_tiny_tf_512.in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'maxvit_small_tf_224.in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
|
|
|
|
'maxvit_small_tf_384.in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'maxvit_small_tf_512.in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'maxvit_base_tf_224.in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
|
|
|
|
'maxvit_base_tf_384.in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'maxvit_base_tf_512.in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'maxvit_large_tf_224.in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
|
|
|
|
'maxvit_large_tf_384.in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'maxvit_large_tf_512.in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
|
|
|
|
'maxvit_base_tf_224.in21k': _cfg(
|
|
|
|
url=''),
|
|
|
|
'maxvit_base_tf_384.in21k_ft_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'maxvit_base_tf_512.in21k_ft_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'maxvit_large_tf_224.in21k': _cfg(
|
|
|
|
url=''),
|
|
|
|
'maxvit_large_tf_384.in21k_ft_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'maxvit_large_tf_512.in21k_ft_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 512, 512), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'maxvit_xlarge_tf_224.in21k': _cfg(
|
|
|
|
url=''),
|
|
|
|
'maxvit_xlarge_tf_384.in21k_ft_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
'maxvit_xlarge_tf_512.in21k_ft_in1k': _cfg(
|
|
|
|
hf_hub_id='timm/',
|
|
|
|
input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'),
|
|
|
|
})
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_pico_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_pico_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_nano_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_nano_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_0_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_0_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_1_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_1_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_2_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_2_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_3_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_3_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_bn_0_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_bn_0_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_rmlp_nano_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_rmlp_nano_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_rmlp_0_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_rmlp_0_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_rmlp_1_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_rmlp_1_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_rmlp_1_rw2_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_rmlp_1_rw2_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_rmlp_2_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_rmlp_2_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_rmlp_2_rw_384(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_rmlp_2_rw_384', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_rmlp_3_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_rmlp_3_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_nano_cc_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_nano_cc_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnext_nano_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnext_nano_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_0_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_0_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_1_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_1_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_2_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_2_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_3_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_3_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_4_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_4_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def coatnet_5_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('coatnet_5_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_pico_rw_256(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_pico_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_nano_rw_256(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_nano_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_tiny_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_tiny_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_tiny_rw_256(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_tiny_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_rmlp_pico_rw_256(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_rmlp_pico_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_rmlp_nano_rw_256(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_rmlp_nano_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_rmlp_tiny_rw_256(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_rmlp_tiny_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_rmlp_small_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_rmlp_small_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_rmlp_small_rw_256(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_rmlp_small_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_rmlp_base_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_rmlp_base_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_rmlp_base_rw_384(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_rmlp_base_rw_384', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_tiny_pm_256(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_tiny_pm_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxxvit_rmlp_nano_rw_256(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxxvit_rmlp_nano_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxxvit_rmlp_tiny_rw_256(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxxvit_rmlp_tiny_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxxvit_rmlp_small_rw_256(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxxvit_rmlp_small_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxxvitv2_nano_rw_256(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxxvitv2_nano_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxxvitv2_rmlp_base_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxxvitv2_rmlp_base_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxxvitv2_rmlp_base_rw_384(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxxvitv2_rmlp_base_rw_384', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxxvitv2_rmlp_large_rw_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxxvitv2_rmlp_large_rw_224', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_tiny_tf_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_tiny_tf_224', 'maxvit_tiny_tf', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_tiny_tf_384(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_tiny_tf_384', 'maxvit_tiny_tf', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_tiny_tf_512(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_tiny_tf_512', 'maxvit_tiny_tf', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_small_tf_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_small_tf_224', 'maxvit_small_tf', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_small_tf_384(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_small_tf_384', 'maxvit_small_tf', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_small_tf_512(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_small_tf_512', 'maxvit_small_tf', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_base_tf_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_base_tf_224', 'maxvit_base_tf', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_base_tf_384(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_base_tf_384', 'maxvit_base_tf', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_base_tf_512(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_base_tf_512', 'maxvit_base_tf', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_large_tf_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_large_tf_224', 'maxvit_large_tf', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_large_tf_384(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_large_tf_384', 'maxvit_large_tf', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_large_tf_512(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_large_tf_512', 'maxvit_large_tf', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_xlarge_tf_224(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_xlarge_tf_224', 'maxvit_xlarge_tf', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_xlarge_tf_384(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_xlarge_tf_384', 'maxvit_xlarge_tf', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def maxvit_xlarge_tf_512(pretrained=False, **kwargs):
|
|
|
|
return _create_maxxvit('maxvit_xlarge_tf_512', 'maxvit_xlarge_tf', pretrained=pretrained, **kwargs)
|