|
|
|
@ -121,6 +121,9 @@ default_cfgs = {
|
|
|
|
|
'maxvit_rmlp_nano_rw_256': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_nano_rw_256_sw-c17bb0d6.pth',
|
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
'maxvit_rmlp_tiny_rw_256': _cfg(
|
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_tiny_rw_256_sw-2da819a5.pth',
|
|
|
|
|
input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
'maxvit_tiny_pm_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
'maxxvit_nano_rw_256': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)),
|
|
|
|
|
|
|
|
|
@ -515,6 +518,13 @@ model_cfgs = dict(
|
|
|
|
|
stem_width=(32, 64),
|
|
|
|
|
**_rw_max_cfg(rel_pos_type='mlp'),
|
|
|
|
|
),
|
|
|
|
|
maxvit_rmlp_tiny_rw_256=MaxxVitCfg(
|
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
|
block_type=('M',) * 4,
|
|
|
|
|
stem_width=(32, 64),
|
|
|
|
|
**_rw_max_cfg(rel_pos_type='mlp'),
|
|
|
|
|
),
|
|
|
|
|
maxvit_tiny_pm_256=MaxxVitCfg(
|
|
|
|
|
embed_dim=(64, 128, 256, 512),
|
|
|
|
|
depths=(2, 2, 5, 2),
|
|
|
|
@ -1721,6 +1731,11 @@ def maxvit_rmlp_nano_rw_256(pretrained=False, **kwargs):
|
|
|
|
|
return _create_maxxvit('maxvit_rmlp_nano_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def maxvit_rmlp_tiny_rw_256(pretrained=False, **kwargs):
|
|
|
|
|
return _create_maxxvit('maxvit_rmlp_tiny_rw_256', pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
|
def maxvit_tiny_pm_256(pretrained=False, **kwargs):
|
|
|
|
|
return _create_maxxvit('maxvit_tiny_pm_256', pretrained=pretrained, **kwargs)
|
|
|
|
|