|
|
|
""" Tensorflow Preprocessing Adapter
|
|
|
|
|
|
|
|
Allows use of Tensorflow preprocessing pipeline in PyTorch Transform
|
|
|
|
|
|
|
|
Copyright of original Tensorflow code below.
|
|
|
|
|
|
|
|
Hacked together by / Copyright 2020 Ross Wightman
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ==============================================================================
|
|
|
|
"""ImageNet preprocessing for MnasNet."""
|
|
|
|
import tensorflow.compat.v1 as tf
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
IMAGE_SIZE = 224
|
|
|
|
CROP_PADDING = 32
|
|
|
|
|
|
|
|
tf.compat.v1.disable_eager_execution()
|
|
|
|
|
|
|
|
def distorted_bounding_box_crop(image_bytes,
|
|
|
|
bbox,
|
|
|
|
min_object_covered=0.1,
|
|
|
|
aspect_ratio_range=(0.75, 1.33),
|
|
|
|
area_range=(0.05, 1.0),
|
|
|
|
max_attempts=100,
|
|
|
|
scope=None):
|
|
|
|
"""Generates cropped_image using one of the bboxes randomly distorted.
|
|
|
|
|
|
|
|
See `tf.image.sample_distorted_bounding_box` for more documentation.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
image_bytes: `Tensor` of binary image data.
|
|
|
|
bbox: `Tensor` of bounding boxes arranged `[1, num_boxes, coords]`
|
|
|
|
where each coordinate is [0, 1) and the coordinates are arranged
|
|
|
|
as `[ymin, xmin, ymax, xmax]`. If num_boxes is 0 then use the whole
|
|
|
|
image.
|
|
|
|
min_object_covered: An optional `float`. Defaults to `0.1`. The cropped
|
|
|
|
area of the image must contain at least this fraction of any bounding
|
|
|
|
box supplied.
|
|
|
|
aspect_ratio_range: An optional list of `float`s. The cropped area of the
|
|
|
|
image must have an aspect ratio = width / height within this range.
|
|
|
|
area_range: An optional list of `float`s. The cropped area of the image
|
|
|
|
must contain a fraction of the supplied image within in this range.
|
|
|
|
max_attempts: An optional `int`. Number of attempts at generating a cropped
|
|
|
|
region of the image of the specified constraints. After `max_attempts`
|
|
|
|
failures, return the entire image.
|
|
|
|
scope: Optional `str` for name scope.
|
|
|
|
Returns:
|
|
|
|
cropped image `Tensor`
|
|
|
|
"""
|
|
|
|
with tf.name_scope(scope, 'distorted_bounding_box_crop', [image_bytes, bbox]):
|
|
|
|
shape = tf.image.extract_jpeg_shape(image_bytes)
|
|
|
|
sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box(
|
|
|
|
shape,
|
|
|
|
bounding_boxes=bbox,
|
|
|
|
min_object_covered=min_object_covered,
|
|
|
|
aspect_ratio_range=aspect_ratio_range,
|
|
|
|
area_range=area_range,
|
|
|
|
max_attempts=max_attempts,
|
|
|
|
use_image_if_no_bounding_boxes=True)
|
|
|
|
bbox_begin, bbox_size, _ = sample_distorted_bounding_box
|
|
|
|
|
|
|
|
# Crop the image to the specified bounding box.
|
|
|
|
offset_y, offset_x, _ = tf.unstack(bbox_begin)
|
|
|
|
target_height, target_width, _ = tf.unstack(bbox_size)
|
|
|
|
crop_window = tf.stack([offset_y, offset_x, target_height, target_width])
|
|
|
|
image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3)
|
|
|
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
def _at_least_x_are_equal(a, b, x):
|
|
|
|
"""At least `x` of `a` and `b` `Tensors` are equal."""
|
|
|
|
match = tf.equal(a, b)
|
|
|
|
match = tf.cast(match, tf.int32)
|
|
|
|
return tf.greater_equal(tf.reduce_sum(match), x)
|
|
|
|
|
|
|
|
|
|
|
|
def _decode_and_random_crop(image_bytes, image_size, resize_method):
|
|
|
|
"""Make a random crop of image_size."""
|
|
|
|
bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])
|
|
|
|
image = distorted_bounding_box_crop(
|
|
|
|
image_bytes,
|
|
|
|
bbox,
|
|
|
|
min_object_covered=0.1,
|
|
|
|
aspect_ratio_range=(3. / 4, 4. / 3.),
|
|
|
|
area_range=(0.08, 1.0),
|
|
|
|
max_attempts=10,
|
|
|
|
scope=None)
|
|
|
|
original_shape = tf.image.extract_jpeg_shape(image_bytes)
|
|
|
|
bad = _at_least_x_are_equal(original_shape, tf.shape(image), 3)
|
|
|
|
|
|
|
|
image = tf.cond(
|
|
|
|
bad,
|
|
|
|
lambda: _decode_and_center_crop(image_bytes, image_size),
|
|
|
|
lambda: tf.image.resize([image], [image_size, image_size], resize_method)[0])
|
|
|
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
def _decode_and_center_crop(image_bytes, image_size, resize_method):
|
|
|
|
"""Crops to center of image with padding then scales image_size."""
|
|
|
|
shape = tf.image.extract_jpeg_shape(image_bytes)
|
|
|
|
image_height = shape[0]
|
|
|
|
image_width = shape[1]
|
|
|
|
|
|
|
|
padded_center_crop_size = tf.cast(
|
|
|
|
((image_size / (image_size + CROP_PADDING)) *
|
|
|
|
tf.cast(tf.minimum(image_height, image_width), tf.float32)),
|
|
|
|
tf.int32)
|
|
|
|
|
|
|
|
offset_height = ((image_height - padded_center_crop_size) + 1) // 2
|
|
|
|
offset_width = ((image_width - padded_center_crop_size) + 1) // 2
|
|
|
|
crop_window = tf.stack([offset_height, offset_width,
|
|
|
|
padded_center_crop_size, padded_center_crop_size])
|
|
|
|
image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3)
|
|
|
|
image = tf.image.resize([image], [image_size, image_size], resize_method)[0]
|
|
|
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
def _flip(image):
|
|
|
|
"""Random horizontal image flip."""
|
|
|
|
image = tf.image.random_flip_left_right(image)
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
def preprocess_for_train(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'):
|
|
|
|
"""Preprocesses the given image for evaluation.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
image_bytes: `Tensor` representing an image binary of arbitrary size.
|
|
|
|
use_bfloat16: `bool` for whether to use bfloat16.
|
|
|
|
image_size: image size.
|
|
|
|
interpolation: image interpolation method
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
A preprocessed image `Tensor`.
|
|
|
|
"""
|
|
|
|
resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR
|
|
|
|
image = _decode_and_random_crop(image_bytes, image_size, resize_method)
|
|
|
|
image = _flip(image)
|
|
|
|
image = tf.reshape(image, [image_size, image_size, 3])
|
|
|
|
image = tf.image.convert_image_dtype(
|
|
|
|
image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32)
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
def preprocess_for_eval(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'):
|
|
|
|
"""Preprocesses the given image for evaluation.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
image_bytes: `Tensor` representing an image binary of arbitrary size.
|
|
|
|
use_bfloat16: `bool` for whether to use bfloat16.
|
|
|
|
image_size: image size.
|
|
|
|
interpolation: image interpolation method
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
A preprocessed image `Tensor`.
|
|
|
|
"""
|
|
|
|
resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR
|
|
|
|
image = _decode_and_center_crop(image_bytes, image_size, resize_method)
|
|
|
|
image = tf.reshape(image, [image_size, image_size, 3])
|
|
|
|
image = tf.image.convert_image_dtype(
|
|
|
|
image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32)
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
def preprocess_image(image_bytes,
|
|
|
|
is_training=False,
|
|
|
|
use_bfloat16=False,
|
|
|
|
image_size=IMAGE_SIZE,
|
|
|
|
interpolation='bicubic'):
|
|
|
|
"""Preprocesses the given image.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
image_bytes: `Tensor` representing an image binary of arbitrary size.
|
|
|
|
is_training: `bool` for whether the preprocessing is for training.
|
|
|
|
use_bfloat16: `bool` for whether to use bfloat16.
|
|
|
|
image_size: image size.
|
|
|
|
interpolation: image interpolation method
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
A preprocessed image `Tensor` with value range of [0, 255].
|
|
|
|
"""
|
|
|
|
if is_training:
|
|
|
|
return preprocess_for_train(image_bytes, use_bfloat16, image_size, interpolation)
|
|
|
|
else:
|
|
|
|
return preprocess_for_eval(image_bytes, use_bfloat16, image_size, interpolation)
|
|
|
|
|
|
|
|
|
|
|
|
class TfPreprocessTransform:
|
|
|
|
|
|
|
|
def __init__(self, is_training=False, size=224, interpolation='bicubic'):
|
|
|
|
self.is_training = is_training
|
|
|
|
self.size = size[0] if isinstance(size, tuple) else size
|
|
|
|
self.interpolation = interpolation
|
|
|
|
self._image_bytes = None
|
|
|
|
self.process_image = self._build_tf_graph()
|
|
|
|
self.sess = None
|
|
|
|
|
|
|
|
def _build_tf_graph(self):
|
|
|
|
with tf.device('/cpu:0'):
|
|
|
|
self._image_bytes = tf.placeholder(
|
|
|
|
shape=[],
|
|
|
|
dtype=tf.string,
|
|
|
|
)
|
|
|
|
img = preprocess_image(
|
|
|
|
self._image_bytes, self.is_training, False, self.size, self.interpolation)
|
|
|
|
return img
|
|
|
|
|
|
|
|
def __call__(self, image_bytes):
|
|
|
|
if self.sess is None:
|
|
|
|
self.sess = tf.Session()
|
|
|
|
img = self.sess.run(self.process_image, feed_dict={self._image_bytes: image_bytes})
|
|
|
|
img = img.round().clip(0, 255).astype(np.uint8)
|
|
|
|
if img.ndim < 3:
|
|
|
|
img = np.expand_dims(img, axis=-1)
|
|
|
|
img = np.rollaxis(img, 2) # HWC to CHW
|
|
|
|
return img
|