You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pytorch-image-models/timm/models/xception_aligned.py

360 lines
13 KiB

"""Pytorch impl of Aligned Xception 41, 65, 71
This is a correct, from scratch impl of Aligned Xception (Deeplab) models compatible with TF weights at
https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
Hacked together by / Copyright 2020 Ross Wightman
"""
from functools import partial
import torch
import torch.nn as nn
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.layers import ClassifierHead, ConvNormAct, create_conv2d, get_norm_act_layer
from timm.layers.helpers import to_3tuple
from ._builder import build_model_with_cfg
from ._manipulate import checkpoint_seq
from ._registry import register_model
__all__ = ['XceptionAligned']
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (10, 10),
'crop_pct': 0.903, 'interpolation': 'bicubic',
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
'first_conv': 'stem.0.conv', 'classifier': 'head.fc',
**kwargs
}
default_cfgs = dict(
xception41=_cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_xception_41-e6439c97.pth'),
xception65=_cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/xception65_ra3-1447db8d.pth',
crop_pct=0.94,
),
xception71=_cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_xception_71-8eec7df1.pth'),
xception41p=_cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/xception41p_ra3-33195bc8.pth',
crop_pct=0.94,
),
xception65p=_cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/xception65p_ra3-3c6114e4.pth',
crop_pct=0.94,
),
)
class SeparableConv2d(nn.Module):
def __init__(
self, in_chs, out_chs, kernel_size=3, stride=1, dilation=1, padding='',
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
super(SeparableConv2d, self).__init__()
self.kernel_size = kernel_size
self.dilation = dilation
# depthwise convolution
self.conv_dw = create_conv2d(
in_chs, in_chs, kernel_size, stride=stride,
padding=padding, dilation=dilation, depthwise=True)
self.bn_dw = norm_layer(in_chs)
self.act_dw = act_layer(inplace=True) if act_layer is not None else nn.Identity()
# pointwise convolution
self.conv_pw = create_conv2d(in_chs, out_chs, kernel_size=1)
self.bn_pw = norm_layer(out_chs)
self.act_pw = act_layer(inplace=True) if act_layer is not None else nn.Identity()
def forward(self, x):
x = self.conv_dw(x)
x = self.bn_dw(x)
x = self.act_dw(x)
x = self.conv_pw(x)
x = self.bn_pw(x)
x = self.act_pw(x)
return x
class PreSeparableConv2d(nn.Module):
def __init__(
self, in_chs, out_chs, kernel_size=3, stride=1, dilation=1, padding='',
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, first_act=True):
super(PreSeparableConv2d, self).__init__()
norm_act_layer = get_norm_act_layer(norm_layer, act_layer=act_layer)
self.kernel_size = kernel_size
self.dilation = dilation
self.norm = norm_act_layer(in_chs, inplace=True) if first_act else nn.Identity()
# depthwise convolution
self.conv_dw = create_conv2d(
in_chs, in_chs, kernel_size, stride=stride,
padding=padding, dilation=dilation, depthwise=True)
# pointwise convolution
self.conv_pw = create_conv2d(in_chs, out_chs, kernel_size=1)
def forward(self, x):
x = self.norm(x)
x = self.conv_dw(x)
x = self.conv_pw(x)
return x
class XceptionModule(nn.Module):
def __init__(
self, in_chs, out_chs, stride=1, dilation=1, pad_type='',
start_with_relu=True, no_skip=False, act_layer=nn.ReLU, norm_layer=None):
super(XceptionModule, self).__init__()
out_chs = to_3tuple(out_chs)
self.in_channels = in_chs
self.out_channels = out_chs[-1]
self.no_skip = no_skip
if not no_skip and (self.out_channels != self.in_channels or stride != 1):
self.shortcut = ConvNormAct(
in_chs, self.out_channels, 1, stride=stride, norm_layer=norm_layer, apply_act=False)
else:
self.shortcut = None
separable_act_layer = None if start_with_relu else act_layer
self.stack = nn.Sequential()
for i in range(3):
if start_with_relu:
self.stack.add_module(f'act{i + 1}', act_layer(inplace=i > 0))
self.stack.add_module(f'conv{i + 1}', SeparableConv2d(
in_chs, out_chs[i], 3, stride=stride if i == 2 else 1, dilation=dilation, padding=pad_type,
act_layer=separable_act_layer, norm_layer=norm_layer))
in_chs = out_chs[i]
def forward(self, x):
skip = x
x = self.stack(x)
if self.shortcut is not None:
skip = self.shortcut(skip)
if not self.no_skip:
x = x + skip
return x
class PreXceptionModule(nn.Module):
def __init__(
self, in_chs, out_chs, stride=1, dilation=1, pad_type='',
no_skip=False, act_layer=nn.ReLU, norm_layer=None):
super(PreXceptionModule, self).__init__()
out_chs = to_3tuple(out_chs)
self.in_channels = in_chs
self.out_channels = out_chs[-1]
self.no_skip = no_skip
if not no_skip and (self.out_channels != self.in_channels or stride != 1):
self.shortcut = create_conv2d(in_chs, self.out_channels, 1, stride=stride)
else:
self.shortcut = nn.Identity()
self.norm = get_norm_act_layer(norm_layer, act_layer=act_layer)(in_chs, inplace=True)
self.stack = nn.Sequential()
for i in range(3):
self.stack.add_module(f'conv{i + 1}', PreSeparableConv2d(
in_chs, out_chs[i], 3, stride=stride if i == 2 else 1, dilation=dilation, padding=pad_type,
act_layer=act_layer, norm_layer=norm_layer, first_act=i > 0))
in_chs = out_chs[i]
def forward(self, x):
x = self.norm(x)
skip = x
x = self.stack(x)
if not self.no_skip:
x = x + self.shortcut(skip)
return x
class XceptionAligned(nn.Module):
"""Modified Aligned Xception
"""
def __init__(
self, block_cfg, num_classes=1000, in_chans=3, output_stride=32, preact=False,
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, drop_rate=0., global_pool='avg'):
super(XceptionAligned, self).__init__()
assert output_stride in (8, 16, 32)
self.num_classes = num_classes
self.drop_rate = drop_rate
self.grad_checkpointing = False
layer_args = dict(act_layer=act_layer, norm_layer=norm_layer)
self.stem = nn.Sequential(*[
ConvNormAct(in_chans, 32, kernel_size=3, stride=2, **layer_args),
create_conv2d(32, 64, kernel_size=3, stride=1) if preact else
ConvNormAct(32, 64, kernel_size=3, stride=1, **layer_args)
])
curr_dilation = 1
curr_stride = 2
self.feature_info = []
self.blocks = nn.Sequential()
module_fn = PreXceptionModule if preact else XceptionModule
for i, b in enumerate(block_cfg):
b['dilation'] = curr_dilation
if b['stride'] > 1:
name = f'blocks.{i}.stack.conv2' if preact else f'blocks.{i}.stack.act3'
self.feature_info += [dict(num_chs=to_3tuple(b['out_chs'])[-2], reduction=curr_stride, module=name)]
next_stride = curr_stride * b['stride']
if next_stride > output_stride:
curr_dilation *= b['stride']
b['stride'] = 1
else:
curr_stride = next_stride
self.blocks.add_module(str(i), module_fn(**b, **layer_args))
self.num_features = self.blocks[-1].out_channels
self.feature_info += [dict(
num_chs=self.num_features, reduction=curr_stride, module='blocks.' + str(len(self.blocks) - 1))]
self.act = act_layer(inplace=True) if preact else nn.Identity()
self.head = ClassifierHead(
in_features=self.num_features, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate)
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^stem',
blocks=r'^blocks\.(\d+)',
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
def forward_features(self, x):
x = self.stem(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.blocks, x)
else:
x = self.blocks(x)
x = self.act(x)
return x
def forward_head(self, x, pre_logits: bool = False):
return self.head(x, pre_logits=pre_logits)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _xception(variant, pretrained=False, **kwargs):
return build_model_with_cfg(
XceptionAligned, variant, pretrained,
feature_cfg=dict(flatten_sequential=True, feature_cls='hook'),
**kwargs)
@register_model
def xception41(pretrained=False, **kwargs):
""" Modified Aligned Xception-41
"""
block_cfg = [
# entry flow
dict(in_chs=64, out_chs=128, stride=2),
dict(in_chs=128, out_chs=256, stride=2),
dict(in_chs=256, out_chs=728, stride=2),
# middle flow
*([dict(in_chs=728, out_chs=728, stride=1)] * 8),
# exit flow
dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2),
dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False),
]
model_args = dict(block_cfg=block_cfg, norm_layer=partial(nn.BatchNorm2d, eps=.001, momentum=.1), **kwargs)
return _xception('xception41', pretrained=pretrained, **model_args)
@register_model
def xception65(pretrained=False, **kwargs):
""" Modified Aligned Xception-65
"""
block_cfg = [
# entry flow
dict(in_chs=64, out_chs=128, stride=2),
dict(in_chs=128, out_chs=256, stride=2),
dict(in_chs=256, out_chs=728, stride=2),
# middle flow
*([dict(in_chs=728, out_chs=728, stride=1)] * 16),
# exit flow
dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2),
dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False),
]
model_args = dict(block_cfg=block_cfg, norm_layer=partial(nn.BatchNorm2d, eps=.001, momentum=.1), **kwargs)
return _xception('xception65', pretrained=pretrained, **model_args)
@register_model
def xception71(pretrained=False, **kwargs):
""" Modified Aligned Xception-71
"""
block_cfg = [
# entry flow
dict(in_chs=64, out_chs=128, stride=2),
dict(in_chs=128, out_chs=256, stride=1),
dict(in_chs=256, out_chs=256, stride=2),
dict(in_chs=256, out_chs=728, stride=1),
dict(in_chs=728, out_chs=728, stride=2),
# middle flow
*([dict(in_chs=728, out_chs=728, stride=1)] * 16),
# exit flow
dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2),
dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False),
]
model_args = dict(block_cfg=block_cfg, norm_layer=partial(nn.BatchNorm2d, eps=.001, momentum=.1), **kwargs)
return _xception('xception71', pretrained=pretrained, **model_args)
@register_model
def xception41p(pretrained=False, **kwargs):
""" Modified Aligned Xception-41 w/ Pre-Act
"""
block_cfg = [
# entry flow
dict(in_chs=64, out_chs=128, stride=2),
dict(in_chs=128, out_chs=256, stride=2),
dict(in_chs=256, out_chs=728, stride=2),
# middle flow
*([dict(in_chs=728, out_chs=728, stride=1)] * 8),
# exit flow
dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2),
dict(in_chs=1024, out_chs=(1536, 1536, 2048), no_skip=True, stride=1),
]
model_args = dict(block_cfg=block_cfg, preact=True, norm_layer=nn.BatchNorm2d, **kwargs)
return _xception('xception41p', pretrained=pretrained, **model_args)
@register_model
def xception65p(pretrained=False, **kwargs):
""" Modified Aligned Xception-65 w/ Pre-Act
"""
block_cfg = [
# entry flow
dict(in_chs=64, out_chs=128, stride=2),
dict(in_chs=128, out_chs=256, stride=2),
dict(in_chs=256, out_chs=728, stride=2),
# middle flow
*([dict(in_chs=728, out_chs=728, stride=1)] * 16),
# exit flow
dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2),
dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True),
]
model_args = dict(
block_cfg=block_cfg, preact=True, norm_layer=partial(nn.BatchNorm2d, eps=.001, momentum=.1), **kwargs)
return _xception('xception65p', pretrained=pretrained, **model_args)