You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
279 lines
9.8 KiB
279 lines
9.8 KiB
4 years ago
|
"""Pytorch impl of Aligned Xception
|
||
|
|
||
|
This is a correct impl of Aligned Xception (Deeplab) models compatible with TF definition.
|
||
|
|
||
|
Hacked together by Ross Wightman
|
||
|
"""
|
||
|
from collections import OrderedDict
|
||
|
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
||
|
from .features import FeatureNet
|
||
|
from .helpers import load_pretrained
|
||
|
from .layers import SelectAdaptivePool2d, ConvBnAct, create_conv2d
|
||
|
from .registry import register_model
|
||
|
|
||
|
__all__ = ['XceptionAligned']
|
||
|
|
||
|
|
||
|
def _cfg(url='', **kwargs):
|
||
|
return {
|
||
|
'url': url,
|
||
|
'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (10, 10),
|
||
|
'crop_pct': 0.903, 'interpolation': 'bicubic',
|
||
|
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
|
||
|
'first_conv': 'stem.0', 'classifier': 'head.fc',
|
||
|
**kwargs
|
||
|
}
|
||
|
|
||
|
|
||
|
default_cfgs = dict(
|
||
|
xception41=_cfg(url=''),
|
||
|
xception65=_cfg(url=''),
|
||
|
xception71=_cfg(url=''),
|
||
|
)
|
||
|
|
||
|
|
||
|
class SeparableConv2d(nn.Module):
|
||
|
def __init__(
|
||
|
self, inplanes, planes, kernel_size=3, stride=1, dilation=1, padding='',
|
||
|
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, norm_kwargs=None):
|
||
|
super(SeparableConv2d, self).__init__()
|
||
|
norm_kwargs = norm_kwargs if norm_kwargs is not None else {}
|
||
|
self.kernel_size = kernel_size
|
||
|
self.dilation = dilation
|
||
|
|
||
|
# depthwise convolution
|
||
|
self.conv_dw = create_conv2d(
|
||
|
inplanes, inplanes, kernel_size, stride=stride,
|
||
|
padding=padding, dilation=dilation, depthwise=True)
|
||
|
self.bn_dw = norm_layer(inplanes, **norm_kwargs)
|
||
|
if act_layer is not None:
|
||
|
self.act_dw = act_layer(inplace=True)
|
||
|
else:
|
||
|
self.act_dw = None
|
||
|
|
||
|
# pointwise convolution
|
||
|
self.conv_pw = create_conv2d(inplanes, planes, kernel_size=1)
|
||
|
self.bn_pw = norm_layer(planes, **norm_kwargs)
|
||
|
if act_layer is not None:
|
||
|
self.act_pw = act_layer(inplace=True)
|
||
|
else:
|
||
|
self.act_pw = None
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.conv_dw(x)
|
||
|
x = self.bn_dw(x)
|
||
|
if self.act_dw is not None:
|
||
|
x = self.act_dw(x)
|
||
|
x = self.conv_pw(x)
|
||
|
x = self.bn_pw(x)
|
||
|
if self.act_pw is not None:
|
||
|
x = self.act_pw(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class XceptionModule(nn.Module):
|
||
|
def __init__(
|
||
|
self, in_chs, out_chs, stride=1, dilation=1, pad_type='',
|
||
|
start_with_relu=True, no_skip=False, act_layer=nn.ReLU, norm_layer=None, norm_kwargs=None):
|
||
|
super(XceptionModule, self).__init__()
|
||
|
norm_kwargs = norm_kwargs if norm_kwargs is not None else {}
|
||
|
if isinstance(out_chs, (list, tuple)):
|
||
|
assert len(out_chs) == 3
|
||
|
else:
|
||
|
out_chs = (out_chs,) * 3
|
||
|
self.in_channels = in_chs
|
||
|
self.out_channels = out_chs[-1]
|
||
|
self.no_skip = no_skip
|
||
|
if not no_skip and (self.out_channels != self.in_channels or stride != 1):
|
||
|
self.shortcut = ConvBnAct(
|
||
|
in_chs, self.out_channels, 1, stride=stride,
|
||
|
norm_layer=norm_layer, norm_kwargs=norm_kwargs, act_layer=None)
|
||
|
else:
|
||
|
self.shortcut = None
|
||
|
|
||
|
separable_act_layer = None if start_with_relu else act_layer
|
||
|
self.stack = nn.Sequential()
|
||
|
for i in range(3):
|
||
|
if start_with_relu:
|
||
|
self.stack.add_module(f'act{i + 1}', nn.ReLU(inplace=i > 0))
|
||
|
self.stack.add_module(f'conv{i + 1}', SeparableConv2d(
|
||
|
in_chs, out_chs[i], 3, stride=stride if i == 2 else 1, dilation=dilation, padding=pad_type,
|
||
|
act_layer=separable_act_layer, norm_layer=norm_layer, norm_kwargs=norm_kwargs))
|
||
|
in_chs = out_chs[i]
|
||
|
|
||
|
def forward(self, x):
|
||
|
skip = x
|
||
|
x = self.stack(x)
|
||
|
if self.shortcut is not None:
|
||
|
skip = self.shortcut(skip)
|
||
|
if not self.no_skip:
|
||
|
x = x + skip
|
||
|
return x
|
||
|
|
||
|
|
||
|
class ClassifierHead(nn.Module):
|
||
|
"""Head."""
|
||
|
|
||
|
def __init__(self, in_chs, num_classes, pool_type='avg', drop_rate=0.):
|
||
|
super(ClassifierHead, self).__init__()
|
||
|
self.drop_rate = drop_rate
|
||
|
self.global_pool = SelectAdaptivePool2d(pool_type=pool_type)
|
||
|
if num_classes > 0:
|
||
|
self.fc = nn.Linear(in_chs, num_classes, bias=True)
|
||
|
else:
|
||
|
self.fc = nn.Identity()
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.global_pool(x).flatten(1)
|
||
|
if self.drop_rate:
|
||
|
x = F.dropout(x, p=float(self.drop_rate), training=self.training)
|
||
|
x = self.fc(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class XceptionAligned(nn.Module):
|
||
|
"""Modified Aligned Xception
|
||
|
"""
|
||
|
|
||
|
def __init__(self, block_cfg, num_classes=1000, in_chans=3, output_stride=32,
|
||
|
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_rate=0., global_pool='avg'):
|
||
|
super(XceptionAligned, self).__init__()
|
||
|
self.num_classes = num_classes
|
||
|
self.drop_rate = drop_rate
|
||
|
assert output_stride in (8, 16, 32)
|
||
|
norm_kwargs = norm_kwargs if norm_kwargs is not None else {}
|
||
|
|
||
|
xtra_args = dict(act_layer=act_layer, norm_layer=norm_layer, norm_kwargs=norm_kwargs)
|
||
|
self.stem = nn.Sequential(*[
|
||
|
ConvBnAct(in_chans, 32, kernel_size=3, stride=2, **xtra_args),
|
||
|
ConvBnAct(32, 64, kernel_size=3, stride=1, **xtra_args)
|
||
|
])
|
||
|
curr_dilation = 1
|
||
|
curr_stride = 2
|
||
|
self.feature_info = [dict(num_chs=64, reduction=curr_stride, module='stem.1')]
|
||
|
|
||
|
self.blocks = nn.Sequential()
|
||
|
for i, b in enumerate(block_cfg):
|
||
|
feature_extract = False
|
||
|
b['dilation'] = curr_dilation
|
||
|
if b['stride'] > 1:
|
||
|
feature_extract = True
|
||
|
next_stride = curr_stride * b['stride']
|
||
|
if next_stride > output_stride:
|
||
|
curr_dilation *= b['stride']
|
||
|
b['stride'] = 1
|
||
|
else:
|
||
|
curr_stride = next_stride
|
||
|
self.blocks.add_module(str(i), XceptionModule(**b, **xtra_args))
|
||
|
self.num_features = self.blocks[-1].out_channels
|
||
|
if feature_extract:
|
||
|
self.feature_info += [dict(
|
||
|
num_chs=self.num_features, reduction=curr_stride, module=f'blocks.{i}.stack.act2')]
|
||
|
|
||
|
self.feature_info += [dict(
|
||
|
num_chs=self.num_features, reduction=curr_stride, module='blocks.' + str(len(self.blocks) - 1))]
|
||
|
|
||
|
self.head = ClassifierHead(
|
||
|
in_chs=self.num_features, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate)
|
||
|
|
||
|
def get_classifier(self):
|
||
|
return self.head.fc
|
||
|
|
||
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
||
|
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
|
||
|
|
||
|
def forward_features(self, x):
|
||
|
x = self.stem(x)
|
||
|
x = self.blocks(x)
|
||
|
return x
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.forward_features(x)
|
||
|
x = self.head(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def _xception(variant, pretrained=False, **kwargs):
|
||
|
features = False
|
||
|
out_indices = None
|
||
|
if kwargs.pop('features_only', False):
|
||
|
features = True
|
||
|
kwargs.pop('num_classes', 0)
|
||
|
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3, 4))
|
||
|
model = XceptionAligned(**kwargs)
|
||
|
model.default_cfg = default_cfgs[variant]
|
||
|
if pretrained:
|
||
|
load_pretrained(
|
||
|
model,
|
||
|
num_classes=kwargs.get('num_classes', 0),
|
||
|
in_chans=kwargs.get('in_chans', 3),
|
||
|
strict=not features)
|
||
|
if features:
|
||
|
model = FeatureNet(model, out_indices)
|
||
|
return model
|
||
|
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def xception41(pretrained=False, **kwargs):
|
||
|
""" Modified Aligned Xception-41
|
||
|
"""
|
||
|
block_cfg = [
|
||
|
# entry flow
|
||
|
dict(in_chs=64, out_chs=128, stride=2),
|
||
|
dict(in_chs=128, out_chs=256, stride=2),
|
||
|
dict(in_chs=256, out_chs=728, stride=2),
|
||
|
# middle flow
|
||
|
*([dict(in_chs=728, out_chs=728, stride=1)] * 8),
|
||
|
# exit flow
|
||
|
dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2),
|
||
|
dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False),
|
||
|
]
|
||
|
model_args = dict(block_cfg=block_cfg, norm_kwargs=dict(eps=.001, momentum=.1), **kwargs)
|
||
|
return _xception('xception41', pretrained=pretrained, **model_args)
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def xception65(pretrained=False, **kwargs):
|
||
|
""" Modified Aligned Xception-65
|
||
|
"""
|
||
|
block_cfg = [
|
||
|
# entry flow
|
||
|
dict(in_chs=64, out_chs=128, stride=2),
|
||
|
dict(in_chs=128, out_chs=256, stride=2),
|
||
|
dict(in_chs=256, out_chs=728, stride=2),
|
||
|
# middle flow
|
||
|
*([dict(in_chs=728, out_chs=728, stride=1)] * 16),
|
||
|
# exit flow
|
||
|
dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2),
|
||
|
dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False),
|
||
|
]
|
||
|
model_args = dict(block_cfg=block_cfg, norm_kwargs=dict(eps=.001, momentum=.1), **kwargs)
|
||
|
return _xception('xception65', pretrained=pretrained, **model_args)
|
||
|
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def xception71(pretrained=False, **kwargs):
|
||
|
""" Modified Aligned Xception-71
|
||
|
"""
|
||
|
block_cfg = [
|
||
|
# entry flow
|
||
|
dict(in_chs=64, out_chs=128, stride=2),
|
||
|
dict(in_chs=128, out_chs=256, stride=1),
|
||
|
dict(in_chs=256, out_chs=256, stride=2),
|
||
|
dict(in_chs=256, out_chs=728, stride=1),
|
||
|
dict(in_chs=728, out_chs=728, stride=2),
|
||
|
# middle flow
|
||
|
*([dict(in_chs=728, out_chs=728, stride=1)] * 16),
|
||
|
# exit flow
|
||
|
dict(in_chs=728, out_chs=(728, 1024, 1024), stride=2),
|
||
|
dict(in_chs=1024, out_chs=(1536, 1536, 2048), stride=1, no_skip=True, start_with_relu=False),
|
||
|
]
|
||
|
model_args = dict(block_cfg=block_cfg, norm_kwargs=dict(eps=.001, momentum=.1), **kwargs)
|
||
|
return _xception('xception71', pretrained=pretrained, **model_args)
|