You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
57 lines
2.1 KiB
57 lines
2.1 KiB
5 years ago
|
""" Padding Helpers
|
||
|
|
||
4 years ago
|
Hacked together by / Copyright 2020 Ross Wightman
|
||
5 years ago
|
"""
|
||
|
import math
|
||
5 years ago
|
from typing import List, Tuple
|
||
5 years ago
|
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
|
||
|
# Calculate symmetric padding for a convolution
|
||
|
def get_padding(kernel_size: int, stride: int = 1, dilation: int = 1, **_) -> int:
|
||
|
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
|
||
|
return padding
|
||
|
|
||
|
|
||
|
# Calculate asymmetric TensorFlow-like 'SAME' padding for a convolution
|
||
|
def get_same_padding(x: int, k: int, s: int, d: int):
|
||
|
return max((math.ceil(x / s) - 1) * s + (k - 1) * d + 1 - x, 0)
|
||
|
|
||
|
|
||
|
# Can SAME padding for given args be done statically?
|
||
|
def is_static_pad(kernel_size: int, stride: int = 1, dilation: int = 1, **_):
|
||
|
return stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0
|
||
|
|
||
|
|
||
|
# Dynamically pad input x with 'SAME' padding for conv with specified args
|
||
5 years ago
|
def pad_same(x, k: List[int], s: List[int], d: List[int] = (1, 1), value: float = 0):
|
||
5 years ago
|
ih, iw = x.size()[-2:]
|
||
|
pad_h, pad_w = get_same_padding(ih, k[0], s[0], d[0]), get_same_padding(iw, k[1], s[1], d[1])
|
||
|
if pad_h > 0 or pad_w > 0:
|
||
5 years ago
|
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2], value=value)
|
||
5 years ago
|
return x
|
||
5 years ago
|
|
||
|
|
||
|
def get_padding_value(padding, kernel_size, **kwargs) -> Tuple[Tuple, bool]:
|
||
|
dynamic = False
|
||
|
if isinstance(padding, str):
|
||
|
# for any string padding, the padding will be calculated for you, one of three ways
|
||
|
padding = padding.lower()
|
||
|
if padding == 'same':
|
||
|
# TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
|
||
|
if is_static_pad(kernel_size, **kwargs):
|
||
|
# static case, no extra overhead
|
||
|
padding = get_padding(kernel_size, **kwargs)
|
||
|
else:
|
||
|
# dynamic 'SAME' padding, has runtime/GPU memory overhead
|
||
|
padding = 0
|
||
|
dynamic = True
|
||
|
elif padding == 'valid':
|
||
|
# 'VALID' padding, same as padding=0
|
||
|
padding = 0
|
||
|
else:
|
||
|
# Default to PyTorch style 'same'-ish symmetric padding
|
||
|
padding = get_padding(kernel_size, **kwargs)
|
||
|
return padding, dynamic
|