|
|
|
""" Vision Transformer (ViT) in PyTorch
|
|
|
|
|
|
|
|
A PyTorch implement of Vision Transformers as described in:
|
|
|
|
|
|
|
|
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale'
|
|
|
|
- https://arxiv.org/abs/2010.11929
|
|
|
|
|
|
|
|
`How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers`
|
|
|
|
- https://arxiv.org/abs/2106.10270
|
|
|
|
|
|
|
|
The official jax code is released and available at https://github.com/google-research/vision_transformer
|
|
|
|
|
|
|
|
Acknowledgments:
|
|
|
|
* The paper authors for releasing code and weights, thanks!
|
|
|
|
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out
|
|
|
|
for some einops/einsum fun
|
|
|
|
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
|
|
|
|
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert
|
|
|
|
|
|
|
|
Hacked together by / Copyright 2020, Ross Wightman
|
|
|
|
"""
|
|
|
|
import math
|
|
|
|
import logging
|
|
|
|
from functools import partial
|
|
|
|
from collections import OrderedDict
|
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
import torch.utils.checkpoint
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
|
|
|
from .helpers import build_model_with_cfg, resolve_pretrained_cfg, named_apply, adapt_input_conv, checkpoint_seq
|
|
|
|
from .layers import PatchEmbed, Mlp, DropPath, trunc_normal_, lecun_normal_
|
|
|
|
from .registry import register_model
|
|
|
|
|
|
|
|
_logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
'url': url,
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
|
|
|
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
|
|
|
|
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
|
|
|
|
'first_conv': 'patch_embed.proj', 'classifier': 'head',
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
# patch models (weights from official Google JAX impl)
|
|
|
|
'vit_tiny_patch16_224': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/'
|
|
|
|
'Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'),
|
|
|
|
'vit_tiny_patch16_384': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/'
|
|
|
|
'Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
|
|
|
|
input_size=(3, 384, 384), crop_pct=1.0),
|
|
|
|
'vit_small_patch32_224': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/'
|
|
|
|
'S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'),
|
|
|
|
'vit_small_patch32_384': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/'
|
|
|
|
'S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
|
|
|
|
input_size=(3, 384, 384), crop_pct=1.0),
|
|
|
|
'vit_small_patch16_224': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/'
|
|
|
|
'S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'),
|
|
|
|
'vit_small_patch16_384': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/'
|
|
|
|
'S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
|
|
|
|
input_size=(3, 384, 384), crop_pct=1.0),
|
|
|
|
'vit_base_patch32_224': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/'
|
|
|
|
'B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'),
|
|
|
|
'vit_base_patch32_384': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/'
|
|
|
|
'B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
|
|
|
|
input_size=(3, 384, 384), crop_pct=1.0),
|
|
|
|
'vit_base_patch16_224': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/'
|
|
|
|
'B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz'),
|
|
|
|
'vit_base_patch16_384': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/'
|
|
|
|
'B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz',
|
|
|
|
input_size=(3, 384, 384), crop_pct=1.0),
|
|
|
|
'vit_base_patch8_224': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/'
|
|
|
|
'B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz'),
|
|
|
|
'vit_large_patch32_224': _cfg(
|
|
|
|
url='', # no official model weights for this combo, only for in21k
|
|
|
|
),
|
|
|
|
'vit_large_patch32_384': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth',
|
|
|
|
input_size=(3, 384, 384), crop_pct=1.0),
|
|
|
|
'vit_large_patch16_224': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/'
|
|
|
|
'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz'),
|
|
|
|
'vit_large_patch16_384': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/'
|
|
|
|
'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz',
|
|
|
|
input_size=(3, 384, 384), crop_pct=1.0),
|
|
|
|
|
|
|
|
'vit_large_patch14_224': _cfg(url=''),
|
|
|
|
'vit_huge_patch14_224': _cfg(url=''),
|
|
|
|
'vit_giant_patch14_224': _cfg(url=''),
|
|
|
|
'vit_gigantic_patch14_224': _cfg(url=''),
|
|
|
|
|
|
|
|
|
|
|
|
# patch models, imagenet21k (weights from official Google JAX impl)
|
|
|
|
'vit_tiny_patch16_224_in21k': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz',
|
|
|
|
num_classes=21843),
|
|
|
|
'vit_small_patch32_224_in21k': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz',
|
|
|
|
num_classes=21843),
|
|
|
|
'vit_small_patch16_224_in21k': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz',
|
|
|
|
num_classes=21843),
|
|
|
|
'vit_base_patch32_224_in21k': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0.npz',
|
|
|
|
num_classes=21843),
|
|
|
|
'vit_base_patch16_224_in21k': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz',
|
|
|
|
num_classes=21843),
|
|
|
|
'vit_base_patch8_224_in21k': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz',
|
|
|
|
num_classes=21843),
|
|
|
|
'vit_large_patch32_224_in21k': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth',
|
|
|
|
num_classes=21843),
|
|
|
|
'vit_large_patch16_224_in21k': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1.npz',
|
|
|
|
num_classes=21843),
|
|
|
|
'vit_huge_patch14_224_in21k': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/imagenet21k/ViT-H_14.npz',
|
|
|
|
hf_hub_id='timm/vit_huge_patch14_224_in21k',
|
|
|
|
num_classes=21843),
|
|
|
|
|
|
|
|
# SAM trained models (https://arxiv.org/abs/2106.01548)
|
|
|
|
'vit_base_patch32_224_sam': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/sam/ViT-B_32.npz'),
|
|
|
|
'vit_base_patch16_224_sam': _cfg(
|
|
|
|
url='https://storage.googleapis.com/vit_models/sam/ViT-B_16.npz'),
|
|
|
|
|
|
|
|
# DINO pretrained - https://arxiv.org/abs/2104.14294 (no classifier head, for fine-tune only)
|
|
|
|
'vit_small_patch16_224_dino': _cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth',
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
|
|
|
|
'vit_small_patch8_224_dino': _cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth',
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
|
|
|
|
'vit_base_patch16_224_dino': _cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth',
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
|
|
|
|
'vit_base_patch8_224_dino': _cfg(
|
|
|
|
url='https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth',
|
|
|
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
|
|
|
|
|
|
|
|
|
|
|
|
# ViT ImageNet-21K-P pretraining by MILL
|
|
|
|
'vit_base_patch16_224_miil_in21k': _cfg(
|
|
|
|
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/vit_base_patch16_224_in21k_miil.pth',
|
|
|
|
mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', num_classes=11221,
|
|
|
|
),
|
|
|
|
'vit_base_patch16_224_miil': _cfg(
|
|
|
|
url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm'
|
|
|
|
'/vit_base_patch16_224_1k_miil_84_4.pth',
|
|
|
|
mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear',
|
|
|
|
),
|
|
|
|
|
|
|
|
'vit_base_patch16_rpn_224': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_base_patch16_rpn_224-sw-3b07e89d.pth'),
|
|
|
|
|
|
|
|
# experimental (may be removed)
|
|
|
|
'vit_base_patch32_plus_256': _cfg(url='', input_size=(3, 256, 256), crop_pct=0.95),
|
|
|
|
'vit_base_patch16_plus_240': _cfg(url='', input_size=(3, 240, 240), crop_pct=0.95),
|
|
|
|
'vit_small_patch16_36x1_224': _cfg(url=''),
|
|
|
|
'vit_small_patch16_18x2_224': _cfg(url=''),
|
|
|
|
'vit_base_patch16_18x2_224': _cfg(url=''),
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
|
|
|
|
super().__init__()
|
|
|
|
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
|
|
|
self.num_heads = num_heads
|
|
|
|
head_dim = dim // num_heads
|
|
|
|
self.scale = head_dim ** -0.5
|
|
|
|
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
B, N, C = x.shape
|
|
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
|
|
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
|
|
|
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
|
|
attn = self.attn_drop(attn)
|
|
|
|
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
|
|
x = self.proj(x)
|
|
|
|
x = self.proj_drop(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class LayerScale(nn.Module):
|
|
|
|
def __init__(self, dim, init_values=1e-5, inplace=False):
|
|
|
|
super().__init__()
|
|
|
|
self.inplace = inplace
|
|
|
|
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
|
|
|
|
|
|
|
|
|
|
|
class Block(nn.Module):
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
|
|
|
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
|
|
|
super().__init__()
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
|
|
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
|
|
|
|
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
|
|
|
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
|
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
self.norm2 = norm_layer(dim)
|
|
|
|
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)
|
|
|
|
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
|
|
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
|
|
|
|
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class ResPostBlock(nn.Module):
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
|
|
|
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
|
|
|
super().__init__()
|
|
|
|
self.init_values = init_values
|
|
|
|
|
|
|
|
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)
|
|
|
|
self.norm2 = norm_layer(dim)
|
|
|
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
|
self.init_weights()
|
|
|
|
|
|
|
|
def init_weights(self):
|
|
|
|
# NOTE this init overrides that base model init with specific changes for the block type
|
|
|
|
if self.init_values is not None:
|
|
|
|
nn.init.constant_(self.norm1.weight, self.init_values)
|
|
|
|
nn.init.constant_(self.norm2.weight, self.init_values)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = x + self.drop_path1(self.norm1(self.attn(x)))
|
|
|
|
x = x + self.drop_path2(self.norm2(self.mlp(x)))
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class ParallelBlock(nn.Module):
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self, dim, num_heads, num_parallel=2, mlp_ratio=4., qkv_bias=False, init_values=None,
|
|
|
|
drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
|
|
|
super().__init__()
|
|
|
|
self.num_parallel = num_parallel
|
|
|
|
self.attns = nn.ModuleList()
|
|
|
|
self.ffns = nn.ModuleList()
|
|
|
|
for _ in range(num_parallel):
|
|
|
|
self.attns.append(nn.Sequential(OrderedDict([
|
|
|
|
('norm', norm_layer(dim)),
|
|
|
|
('attn', Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)),
|
|
|
|
('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()),
|
|
|
|
('drop_path', DropPath(drop_path) if drop_path > 0. else nn.Identity())
|
|
|
|
])))
|
|
|
|
self.ffns.append(nn.Sequential(OrderedDict([
|
|
|
|
('norm', norm_layer(dim)),
|
|
|
|
('mlp', Mlp(dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)),
|
|
|
|
('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()),
|
|
|
|
('drop_path', DropPath(drop_path) if drop_path > 0. else nn.Identity())
|
|
|
|
])))
|
|
|
|
|
|
|
|
def _forward_jit(self, x):
|
|
|
|
x = x + torch.stack([attn(x) for attn in self.attns]).sum(dim=0)
|
|
|
|
x = x + torch.stack([ffn(x) for ffn in self.ffns]).sum(dim=0)
|
|
|
|
return x
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def _forward(self, x):
|
|
|
|
x = x + sum(attn(x) for attn in self.attns)
|
|
|
|
x = x + sum(ffn(x) for ffn in self.ffns)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
|
|
return self._forward_jit(x)
|
|
|
|
else:
|
|
|
|
return self._forward(x)
|
|
|
|
|
|
|
|
|
|
|
|
class VisionTransformer(nn.Module):
|
|
|
|
""" Vision Transformer
|
|
|
|
|
|
|
|
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
|
|
|
|
- https://arxiv.org/abs/2010.11929
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token',
|
|
|
|
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, init_values=None,
|
|
|
|
class_token=True, no_embed_class=False, fc_norm=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
|
|
|
|
weight_init='', embed_layer=PatchEmbed, norm_layer=None, act_layer=None, block_fn=Block):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
img_size (int, tuple): input image size
|
|
|
|
patch_size (int, tuple): patch size
|
|
|
|
in_chans (int): number of input channels
|
|
|
|
num_classes (int): number of classes for classification head
|
|
|
|
global_pool (str): type of global pooling for final sequence (default: 'token')
|
|
|
|
embed_dim (int): embedding dimension
|
|
|
|
depth (int): depth of transformer
|
|
|
|
num_heads (int): number of attention heads
|
|
|
|
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
|
|
|
qkv_bias (bool): enable bias for qkv if True
|
|
|
|
init_values: (float): layer-scale init values
|
|
|
|
class_token (bool): use class token
|
|
|
|
fc_norm (Optional[bool]): pre-fc norm after pool, set if global_pool == 'avg' if None (default: None)
|
|
|
|
drop_rate (float): dropout rate
|
|
|
|
attn_drop_rate (float): attention dropout rate
|
|
|
|
drop_path_rate (float): stochastic depth rate
|
|
|
|
weight_init (str): weight init scheme
|
|
|
|
embed_layer (nn.Module): patch embedding layer
|
|
|
|
norm_layer: (nn.Module): normalization layer
|
|
|
|
act_layer: (nn.Module): MLP activation layer
|
|
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
assert global_pool in ('', 'avg', 'token')
|
|
|
|
assert class_token or global_pool != 'token'
|
|
|
|
use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm
|
|
|
|
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
|
|
|
act_layer = act_layer or nn.GELU
|
|
|
|
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.global_pool = global_pool
|
|
|
|
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
|
|
|
self.num_prefix_tokens = 1 if class_token else 0
|
|
|
|
self.no_embed_class = no_embed_class
|
|
|
|
self.grad_checkpointing = False
|
|
|
|
|
|
|
|
self.patch_embed = embed_layer(
|
|
|
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
|
|
|
num_patches = self.patch_embed.num_patches
|
|
|
|
|
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
|
|
|
|
embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens
|
|
|
|
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02)
|
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
|
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
|
|
|
self.blocks = nn.Sequential(*[
|
|
|
|
block_fn(
|
|
|
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, init_values=init_values,
|
|
|
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer)
|
|
|
|
for i in range(depth)])
|
|
|
|
self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity()
|
|
|
|
|
|
|
|
# Classifier Head
|
|
|
|
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity()
|
|
|
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
|
|
|
|
if weight_init != 'skip':
|
|
|
|
self.init_weights(weight_init)
|
|
|
|
|
|
|
|
def init_weights(self, mode=''):
|
|
|
|
assert mode in ('jax', 'jax_nlhb', 'moco', '')
|
|
|
|
head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.
|
|
|
|
trunc_normal_(self.pos_embed, std=.02)
|
|
|
|
if self.cls_token is not None:
|
|
|
|
nn.init.normal_(self.cls_token, std=1e-6)
|
|
|
|
named_apply(get_init_weights_vit(mode, head_bias), self)
|
|
|
|
|
|
|
|
def _init_weights(self, m):
|
|
|
|
# this fn left here for compat with downstream users
|
|
|
|
init_weights_vit_timm(m)
|
|
|
|
|
|
|
|
@torch.jit.ignore()
|
|
|
|
def load_pretrained(self, checkpoint_path, prefix=''):
|
|
|
|
_load_weights(self, checkpoint_path, prefix)
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def no_weight_decay(self):
|
|
|
|
return {'pos_embed', 'cls_token', 'dist_token'}
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def group_matcher(self, coarse=False):
|
|
|
|
return dict(
|
|
|
|
stem=r'^cls_token|pos_embed|patch_embed', # stem and embed
|
|
|
|
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
|
|
|
|
)
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def set_grad_checkpointing(self, enable=True):
|
|
|
|
self.grad_checkpointing = enable
|
|
|
|
|
|
|
|
@torch.jit.ignore
|
|
|
|
def get_classifier(self):
|
|
|
|
return self.head
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes: int, global_pool=None):
|
|
|
|
self.num_classes = num_classes
|
|
|
|
if global_pool is not None:
|
|
|
|
assert global_pool in ('', 'avg', 'token')
|
|
|
|
self.global_pool = global_pool
|
|
|
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
|
|
|
|
def _pos_embed(self, x):
|
|
|
|
if self.no_embed_class:
|
|
|
|
# deit-3, updated JAX (big vision)
|
|
|
|
# position embedding does not overlap with class token, add then concat
|
|
|
|
x = x + self.pos_embed
|
|
|
|
if self.cls_token is not None:
|
|
|
|
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
|
|
|
else:
|
|
|
|
# original timm, JAX, and deit vit impl
|
|
|
|
# pos_embed has entry for class token, concat then add
|
|
|
|
if self.cls_token is not None:
|
|
|
|
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
|
|
|
x = x + self.pos_embed
|
|
|
|
return self.pos_drop(x)
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
x = self.patch_embed(x)
|
|
|
|
x = self._pos_embed(x)
|
|
|
|
if self.grad_checkpointing and not torch.jit.is_scripting():
|
|
|
|
x = checkpoint_seq(self.blocks, x)
|
|
|
|
else:
|
|
|
|
x = self.blocks(x)
|
|
|
|
x = self.norm(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward_head(self, x, pre_logits: bool = False):
|
|
|
|
if self.global_pool:
|
|
|
|
x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
|
|
|
|
x = self.fc_norm(x)
|
|
|
|
return x if pre_logits else self.head(x)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.forward_features(x)
|
|
|
|
x = self.forward_head(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def init_weights_vit_timm(module: nn.Module, name: str = ''):
|
|
|
|
""" ViT weight initialization, original timm impl (for reproducibility) """
|
|
|
|
if isinstance(module, nn.Linear):
|
|
|
|
trunc_normal_(module.weight, std=.02)
|
|
|
|
if module.bias is not None:
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
elif hasattr(module, 'init_weights'):
|
|
|
|
module.init_weights()
|
|
|
|
|
|
|
|
|
|
|
|
def init_weights_vit_jax(module: nn.Module, name: str = '', head_bias: float = 0.):
|
|
|
|
""" ViT weight initialization, matching JAX (Flax) impl """
|
|
|
|
if isinstance(module, nn.Linear):
|
|
|
|
if name.startswith('head'):
|
|
|
|
nn.init.zeros_(module.weight)
|
|
|
|
nn.init.constant_(module.bias, head_bias)
|
|
|
|
else:
|
|
|
|
nn.init.xavier_uniform_(module.weight)
|
|
|
|
if module.bias is not None:
|
|
|
|
nn.init.normal_(module.bias, std=1e-6) if 'mlp' in name else nn.init.zeros_(module.bias)
|
|
|
|
elif isinstance(module, nn.Conv2d):
|
|
|
|
lecun_normal_(module.weight)
|
|
|
|
if module.bias is not None:
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
elif hasattr(module, 'init_weights'):
|
|
|
|
module.init_weights()
|
|
|
|
|
|
|
|
|
|
|
|
def init_weights_vit_moco(module: nn.Module, name: str = ''):
|
|
|
|
""" ViT weight initialization, matching moco-v3 impl minus fixed PatchEmbed """
|
|
|
|
if isinstance(module, nn.Linear):
|
|
|
|
if 'qkv' in name:
|
|
|
|
# treat the weights of Q, K, V separately
|
|
|
|
val = math.sqrt(6. / float(module.weight.shape[0] // 3 + module.weight.shape[1]))
|
|
|
|
nn.init.uniform_(module.weight, -val, val)
|
|
|
|
else:
|
|
|
|
nn.init.xavier_uniform_(module.weight)
|
|
|
|
if module.bias is not None:
|
|
|
|
nn.init.zeros_(module.bias)
|
|
|
|
elif hasattr(module, 'init_weights'):
|
|
|
|
module.init_weights()
|
|
|
|
|
|
|
|
|
|
|
|
def get_init_weights_vit(mode='jax', head_bias: float = 0.):
|
|
|
|
if 'jax' in mode:
|
|
|
|
return partial(init_weights_vit_jax, head_bias=head_bias)
|
|
|
|
elif 'moco' in mode:
|
|
|
|
return init_weights_vit_moco
|
|
|
|
else:
|
|
|
|
return init_weights_vit_timm
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
|
|
|
|
""" Load weights from .npz checkpoints for official Google Brain Flax implementation
|
|
|
|
"""
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
def _n2p(w, t=True):
|
|
|
|
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
|
|
|
|
w = w.flatten()
|
|
|
|
if t:
|
|
|
|
if w.ndim == 4:
|
|
|
|
w = w.transpose([3, 2, 0, 1])
|
|
|
|
elif w.ndim == 3:
|
|
|
|
w = w.transpose([2, 0, 1])
|
|
|
|
elif w.ndim == 2:
|
|
|
|
w = w.transpose([1, 0])
|
|
|
|
return torch.from_numpy(w)
|
|
|
|
|
|
|
|
w = np.load(checkpoint_path)
|
|
|
|
if not prefix and 'opt/target/embedding/kernel' in w:
|
|
|
|
prefix = 'opt/target/'
|
|
|
|
|
|
|
|
if hasattr(model.patch_embed, 'backbone'):
|
|
|
|
# hybrid
|
|
|
|
backbone = model.patch_embed.backbone
|
|
|
|
stem_only = not hasattr(backbone, 'stem')
|
|
|
|
stem = backbone if stem_only else backbone.stem
|
|
|
|
stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
|
|
|
|
stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
|
|
|
|
stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
|
|
|
|
if not stem_only:
|
|
|
|
for i, stage in enumerate(backbone.stages):
|
|
|
|
for j, block in enumerate(stage.blocks):
|
|
|
|
bp = f'{prefix}block{i + 1}/unit{j + 1}/'
|
|
|
|
for r in range(3):
|
|
|
|
getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
|
|
|
|
getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
|
|
|
|
getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
|
|
|
|
if block.downsample is not None:
|
|
|
|
block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
|
|
|
|
block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
|
|
|
|
block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
|
|
|
|
embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
|
|
|
|
else:
|
|
|
|
embed_conv_w = adapt_input_conv(
|
|
|
|
model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
|
|
|
|
model.patch_embed.proj.weight.copy_(embed_conv_w)
|
|
|
|
model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
|
|
|
|
model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
|
|
|
|
pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
|
|
|
|
if pos_embed_w.shape != model.pos_embed.shape:
|
|
|
|
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
|
|
|
|
pos_embed_w,
|
|
|
|
model.pos_embed,
|
|
|
|
getattr(model, 'num_prefix_tokens', 1),
|
|
|
|
model.patch_embed.grid_size
|
|
|
|
)
|
|
|
|
model.pos_embed.copy_(pos_embed_w)
|
|
|
|
model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
|
|
|
|
model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
|
|
|
|
if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
|
|
|
|
model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
|
|
|
|
model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
|
|
|
|
# NOTE representation layer has been removed, not used in latest 21k/1k pretrained weights
|
|
|
|
# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
|
|
|
|
# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
|
|
|
|
# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
|
|
|
|
for i, block in enumerate(model.blocks.children()):
|
|
|
|
block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
|
|
|
|
mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
|
|
|
|
block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
|
|
|
|
block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
|
|
|
|
block.attn.qkv.weight.copy_(torch.cat([
|
|
|
|
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
|
|
|
|
block.attn.qkv.bias.copy_(torch.cat([
|
|
|
|
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
|
|
|
|
block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
|
|
|
|
block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
|
|
|
|
for r in range(2):
|
|
|
|
getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
|
|
|
|
getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
|
|
|
|
block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
|
|
|
|
block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))
|
|
|
|
|
|
|
|
|
|
|
|
def resize_pos_embed(posemb, posemb_new, num_prefix_tokens=1, gs_new=()):
|
|
|
|
# Rescale the grid of position embeddings when loading from state_dict. Adapted from
|
|
|
|
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
|
|
|
|
_logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape)
|
|
|
|
ntok_new = posemb_new.shape[1]
|
|
|
|
if num_prefix_tokens:
|
|
|
|
posemb_prefix, posemb_grid = posemb[:, :num_prefix_tokens], posemb[0, num_prefix_tokens:]
|
|
|
|
ntok_new -= num_prefix_tokens
|
|
|
|
else:
|
|
|
|
posemb_prefix, posemb_grid = posemb[:, :0], posemb[0]
|
|
|
|
gs_old = int(math.sqrt(len(posemb_grid)))
|
|
|
|
if not len(gs_new): # backwards compatibility
|
|
|
|
gs_new = [int(math.sqrt(ntok_new))] * 2
|
|
|
|
assert len(gs_new) >= 2
|
|
|
|
_logger.info('Position embedding grid-size from %s to %s', [gs_old, gs_old], gs_new)
|
|
|
|
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
|
|
|
posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode='bicubic', align_corners=False)
|
|
|
|
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
|
|
|
|
posemb = torch.cat([posemb_prefix, posemb_grid], dim=1)
|
|
|
|
return posemb
|
|
|
|
|
|
|
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model, adapt_layer_scale=False):
|
|
|
|
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
|
|
|
import re
|
|
|
|
out_dict = {}
|
|
|
|
if 'model' in state_dict:
|
|
|
|
# For deit models
|
|
|
|
state_dict = state_dict['model']
|
|
|
|
|
|
|
|
for k, v in state_dict.items():
|
|
|
|
if 'patch_embed.proj.weight' in k and len(v.shape) < 4:
|
|
|
|
# For old models that I trained prior to conv based patchification
|
|
|
|
O, I, H, W = model.patch_embed.proj.weight.shape
|
|
|
|
v = v.reshape(O, -1, H, W)
|
|
|
|
elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]:
|
|
|
|
# To resize pos embedding when using model at different size from pretrained weights
|
|
|
|
v = resize_pos_embed(
|
|
|
|
v,
|
|
|
|
model.pos_embed,
|
|
|
|
getattr(model, 'num_prefix_tokens', 1),
|
|
|
|
model.patch_embed.grid_size
|
|
|
|
)
|
|
|
|
elif adapt_layer_scale and 'gamma_' in k:
|
|
|
|
# remap layer-scale gamma into sub-module (deit3 models)
|
|
|
|
k = re.sub(r'gamma_([0-9])', r'ls\1.gamma', k)
|
|
|
|
elif 'pre_logits' in k:
|
|
|
|
# NOTE representation layer removed as not used in latest 21k/1k pretrained weights
|
|
|
|
continue
|
|
|
|
out_dict[k] = v
|
|
|
|
return out_dict
|
|
|
|
|
|
|
|
|
|
|
|
def _create_vision_transformer(variant, pretrained=False, **kwargs):
|
|
|
|
if kwargs.get('features_only', None):
|
|
|
|
raise RuntimeError('features_only not implemented for Vision Transformer models.')
|
|
|
|
|
|
|
|
pretrained_cfg = resolve_pretrained_cfg(variant, pretrained_cfg=kwargs.pop('pretrained_cfg', None))
|
|
|
|
model = build_model_with_cfg(
|
|
|
|
VisionTransformer, variant, pretrained,
|
|
|
|
pretrained_cfg=pretrained_cfg,
|
|
|
|
pretrained_filter_fn=checkpoint_filter_fn,
|
|
|
|
pretrained_custom_load='npz' in pretrained_cfg['url'],
|
|
|
|
**kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_tiny_patch16_224(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Tiny (Vit-Ti/16)
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_tiny_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_tiny_patch16_384(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Tiny (Vit-Ti/16) @ 384x384.
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_tiny_patch16_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_small_patch32_224(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Small (ViT-S/32)
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_small_patch32_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_small_patch32_384(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Small (ViT-S/32) at 384x384.
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_small_patch32_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_small_patch16_224(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Small (ViT-S/16)
|
|
|
|
NOTE I've replaced my previous 'small' model definition and weights with the small variant from the DeiT paper
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_small_patch16_384(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Small (ViT-S/16)
|
|
|
|
NOTE I've replaced my previous 'small' model definition and weights with the small variant from the DeiT paper
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_small_patch16_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch32_224(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
ImageNet-1k weights fine-tuned from in21k, source https://github.com/google-research/vision_transformer.
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch32_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch32_384(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch32_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch16_224(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch16_384(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch8_224(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base (ViT-B/8) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch8_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_large_patch32_224(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights.
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_large_patch32_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_large_patch32_384(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_large_patch32_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_large_patch16_224(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_large_patch16_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_large_patch16_384(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_large_patch16_384', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_large_patch14_224(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Large model (ViT-L/14)
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_large_patch14_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_huge_patch14_224(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_huge_patch14_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_giant_patch14_224(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Giant model (ViT-g/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=14, embed_dim=1408, mlp_ratio=48/11, depth=40, num_heads=16, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_giant_patch14_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_gigantic_patch14_224(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Gigantic model (ViT-G/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=14, embed_dim=1664, mlp_ratio=64/13, depth=48, num_heads=16, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_gigantic_patch14_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_tiny_patch16_224_in21k(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Tiny (Vit-Ti/16).
|
|
|
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_tiny_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_small_patch32_224_in21k(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Small (ViT-S/16)
|
|
|
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_small_patch32_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_small_patch16_224_in21k(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Small (ViT-S/16)
|
|
|
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_small_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch32_224_in21k(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch32_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch16_224_in21k(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch8_224_in21k(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base model (ViT-B/8) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch8_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_large_patch32_224_in21k(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
NOTE: this model has a representation layer but the 21k classifier head is zero'd out in original weights
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_large_patch32_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_large_patch16_224_in21k(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
NOTE: this model has valid 21k classifier head and no representation (pre-logits) layer
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_large_patch16_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_huge_patch14_224_in21k(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
|
|
|
|
NOTE: this model has a representation layer but the 21k classifier head is zero'd out in original weights
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_huge_patch14_224_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch16_224_sam(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base (ViT-B/16) w/ SAM pretrained weights. Paper: https://arxiv.org/abs/2106.01548
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_224_sam', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch32_224_sam(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base (ViT-B/32) w/ SAM pretrained weights. Paper: https://arxiv.org/abs/2106.01548
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch32_224_sam', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_small_patch16_224_dino(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Small (ViT-S/16) w/ DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_small_patch16_224_dino', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_small_patch8_224_dino(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Small (ViT-S/8) w/ DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=8, embed_dim=384, depth=12, num_heads=6, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_small_patch8_224_dino', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch16_224_dino(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base (ViT-B/16) /w DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_224_dino', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch8_224_dino(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base (ViT-B/8) w/ DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch8_224_dino', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch16_224_miil_in21k(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_224_miil_in21k', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch16_224_miil(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
|
|
|
|
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_224_miil', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
# Experimental models below
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch32_plus_256(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base (ViT-B/32+)
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=32, embed_dim=896, depth=12, num_heads=14, init_values=1e-5, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch32_plus_256', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch16_plus_240(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base (ViT-B/16+)
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=896, depth=12, num_heads=14, init_values=1e-5, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_plus_240', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch16_rpn_224(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base (ViT-B/16) w/ residual post-norm
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(
|
|
|
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, init_values=1e-5, class_token=False,
|
|
|
|
block_fn=ResPostBlock, global_pool=kwargs.pop('global_pool', 'avg'), **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_rpn_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_small_patch16_36x1_224(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base w/ LayerScale + 36 x 1 (36 block serial) config. Experimental, may remove.
|
|
|
|
Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795
|
|
|
|
Paper focuses on 24x2 + 48x1 for 'Small' width but those are extremely slow.
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(patch_size=16, embed_dim=384, depth=36, num_heads=6, init_values=1e-5, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_small_patch16_36x1_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_small_patch16_18x2_224(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Small w/ LayerScale + 18 x 2 (36 block parallel) config. Experimental, may remove.
|
|
|
|
Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795
|
|
|
|
Paper focuses on 24x2 + 48x1 for 'Small' width but those are extremely slow.
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(
|
|
|
|
patch_size=16, embed_dim=384, depth=18, num_heads=6, init_values=1e-5, block_fn=ParallelBlock, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_small_patch16_18x2_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def vit_base_patch16_18x2_224(pretrained=False, **kwargs):
|
|
|
|
""" ViT-Base w/ LayerScale + 18 x 2 (36 block parallel) config. Experimental, may remove.
|
|
|
|
Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795
|
|
|
|
"""
|
|
|
|
model_kwargs = dict(
|
|
|
|
patch_size=16, embed_dim=768, depth=18, num_heads=12, init_values=1e-5, block_fn=ParallelBlock, **kwargs)
|
|
|
|
model = _create_vision_transformer('vit_base_patch16_18x2_224', pretrained=pretrained, **model_kwargs)
|
|
|
|
return model
|