|
|
|
from models.inception_v4 import *
|
|
|
|
from models.inception_resnet_v2 import *
|
|
|
|
from models.densenet import *
|
|
|
|
from models.resnet import *
|
|
|
|
from models.dpn import *
|
|
|
|
from models.senet import *
|
|
|
|
from models.xception import *
|
|
|
|
from models.pnasnet import *
|
|
|
|
from models.gen_efficientnet import *
|
|
|
|
from models.inception_v3 import *
|
|
|
|
from models.gluon_resnet import *
|
|
|
|
|
|
|
|
from models.helpers import load_checkpoint
|
|
|
|
|
|
|
|
|
|
|
|
def create_model(
|
|
|
|
model_name='resnet50',
|
|
|
|
pretrained=None,
|
|
|
|
num_classes=1000,
|
|
|
|
in_chans=3,
|
|
|
|
checkpoint_path='',
|
|
|
|
**kwargs):
|
|
|
|
|
|
|
|
margs = dict(num_classes=num_classes, in_chans=in_chans, pretrained=pretrained)
|
|
|
|
|
|
|
|
# Not all models have support for batchnorm params passed as args, only gen_efficientnet variants
|
|
|
|
supports_bn_params = model_name in gen_efficientnet_model_names()
|
|
|
|
if not supports_bn_params and any([x in kwargs for x in ['bn_tf', 'bn_momentum', 'bn_eps']]):
|
|
|
|
kwargs.pop('bn_tf', None)
|
|
|
|
kwargs.pop('bn_momentum', None)
|
|
|
|
kwargs.pop('bn_eps', None)
|
|
|
|
|
|
|
|
if model_name in globals():
|
|
|
|
create_fn = globals()[model_name]
|
|
|
|
model = create_fn(**margs, **kwargs)
|
|
|
|
else:
|
|
|
|
raise RuntimeError('Unknown model (%s)' % model_name)
|
|
|
|
|
|
|
|
if checkpoint_path:
|
|
|
|
load_checkpoint(model, checkpoint_path)
|
|
|
|
|
|
|
|
return model
|