|
|
|
"""
|
|
|
|
pnasnet5large implementation grabbed from Cadene's pretrained models
|
|
|
|
Additional credit to https://github.com/creafz
|
|
|
|
|
|
|
|
https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/pnasnet.py
|
|
|
|
|
|
|
|
"""
|
|
|
|
from __future__ import print_function, division, absolute_import
|
|
|
|
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
from .helpers import load_pretrained
|
|
|
|
from .layers import SelectAdaptivePool2d
|
|
|
|
from .registry import register_model
|
|
|
|
|
|
|
|
__all__ = ['PNASNet5Large']
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
'pnasnet5large': {
|
|
|
|
'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/pnasnet5large-bf079911.pth',
|
|
|
|
'input_size': (3, 331, 331),
|
|
|
|
'pool_size': (11, 11),
|
|
|
|
'crop_pct': 0.875,
|
|
|
|
'interpolation': 'bicubic',
|
|
|
|
'mean': (0.5, 0.5, 0.5),
|
|
|
|
'std': (0.5, 0.5, 0.5),
|
|
|
|
'num_classes': 1001,
|
|
|
|
'first_conv': 'conv_0.conv',
|
|
|
|
'classifier': 'last_linear',
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class MaxPool(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, kernel_size, stride=1, padding=1, zero_pad=False):
|
|
|
|
super(MaxPool, self).__init__()
|
|
|
|
self.zero_pad = nn.ZeroPad2d((1, 0, 1, 0)) if zero_pad else None
|
|
|
|
self.pool = nn.MaxPool2d(kernel_size, stride=stride, padding=padding)
|
|
|
|
|
|
|
|
def forward(self, x):
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
if self.zero_pad is not None:
|
|
|
|
x = self.zero_pad(x)
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
x = self.pool(x)
|
|
|
|
x = x[:, :, 1:, 1:]
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
else:
|
|
|
|
x = self.pool(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class SeparableConv2d(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, in_channels, out_channels, dw_kernel_size, dw_stride,
|
|
|
|
dw_padding):
|
|
|
|
super(SeparableConv2d, self).__init__()
|
|
|
|
self.depthwise_conv2d = nn.Conv2d(in_channels, in_channels,
|
|
|
|
kernel_size=dw_kernel_size,
|
|
|
|
stride=dw_stride, padding=dw_padding,
|
|
|
|
groups=in_channels, bias=False)
|
|
|
|
self.pointwise_conv2d = nn.Conv2d(in_channels, out_channels,
|
|
|
|
kernel_size=1, bias=False)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.depthwise_conv2d(x)
|
|
|
|
x = self.pointwise_conv2d(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class BranchSeparables(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
|
|
|
stem_cell=False, zero_pad=False):
|
|
|
|
super(BranchSeparables, self).__init__()
|
|
|
|
padding = kernel_size // 2
|
|
|
|
middle_channels = out_channels if stem_cell else in_channels
|
|
|
|
self.zero_pad = nn.ZeroPad2d((1, 0, 1, 0)) if zero_pad else None
|
|
|
|
self.relu_1 = nn.ReLU()
|
|
|
|
self.separable_1 = SeparableConv2d(in_channels, middle_channels,
|
|
|
|
kernel_size, dw_stride=stride,
|
|
|
|
dw_padding=padding)
|
|
|
|
self.bn_sep_1 = nn.BatchNorm2d(middle_channels, eps=0.001)
|
|
|
|
self.relu_2 = nn.ReLU()
|
|
|
|
self.separable_2 = SeparableConv2d(middle_channels, out_channels,
|
|
|
|
kernel_size, dw_stride=1,
|
|
|
|
dw_padding=padding)
|
|
|
|
self.bn_sep_2 = nn.BatchNorm2d(out_channels, eps=0.001)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.relu_1(x)
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
if self.zero_pad is not None:
|
|
|
|
x = self.zero_pad(x)
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
x = self.separable_1(x)
|
|
|
|
x = x[:, :, 1:, 1:].contiguous()
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
else:
|
|
|
|
x = self.separable_1(x)
|
|
|
|
x = self.bn_sep_1(x)
|
|
|
|
x = self.relu_2(x)
|
|
|
|
x = self.separable_2(x)
|
|
|
|
x = self.bn_sep_2(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class ReluConvBn(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1):
|
|
|
|
super(ReluConvBn, self).__init__()
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
self.conv = nn.Conv2d(in_channels, out_channels,
|
|
|
|
kernel_size=kernel_size, stride=stride,
|
|
|
|
bias=False)
|
|
|
|
self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.relu(x)
|
|
|
|
x = self.conv(x)
|
|
|
|
x = self.bn(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class FactorizedReduction(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, in_channels, out_channels):
|
|
|
|
super(FactorizedReduction, self).__init__()
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
self.path_1 = nn.Sequential(OrderedDict([
|
|
|
|
('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)),
|
|
|
|
('conv', nn.Conv2d(in_channels, out_channels // 2,
|
|
|
|
kernel_size=1, bias=False)),
|
|
|
|
]))
|
|
|
|
self.path_2 = nn.Sequential(OrderedDict([
|
|
|
|
('pad', nn.ZeroPad2d((0, 1, 0, 1))),
|
|
|
|
('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)),
|
|
|
|
('conv', nn.Conv2d(in_channels, out_channels // 2,
|
|
|
|
kernel_size=1, bias=False)),
|
|
|
|
]))
|
|
|
|
self.final_path_bn = nn.BatchNorm2d(out_channels, eps=0.001)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.relu(x)
|
|
|
|
|
|
|
|
x_path1 = self.path_1(x)
|
|
|
|
|
|
|
|
x_path2 = self.path_2.pad(x)
|
|
|
|
x_path2 = x_path2[:, :, 1:, 1:]
|
|
|
|
x_path2 = self.path_2.avgpool(x_path2)
|
|
|
|
x_path2 = self.path_2.conv(x_path2)
|
|
|
|
|
|
|
|
out = self.final_path_bn(torch.cat([x_path1, x_path2], 1))
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class CellBase(nn.Module):
|
|
|
|
|
|
|
|
def cell_forward(self, x_left, x_right):
|
|
|
|
x_comb_iter_0_left = self.comb_iter_0_left(x_left)
|
|
|
|
x_comb_iter_0_right = self.comb_iter_0_right(x_left)
|
|
|
|
x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right
|
|
|
|
|
|
|
|
x_comb_iter_1_left = self.comb_iter_1_left(x_right)
|
|
|
|
x_comb_iter_1_right = self.comb_iter_1_right(x_right)
|
|
|
|
x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right
|
|
|
|
|
|
|
|
x_comb_iter_2_left = self.comb_iter_2_left(x_right)
|
|
|
|
x_comb_iter_2_right = self.comb_iter_2_right(x_right)
|
|
|
|
x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right
|
|
|
|
|
|
|
|
x_comb_iter_3_left = self.comb_iter_3_left(x_comb_iter_2)
|
|
|
|
x_comb_iter_3_right = self.comb_iter_3_right(x_right)
|
|
|
|
x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right
|
|
|
|
|
|
|
|
x_comb_iter_4_left = self.comb_iter_4_left(x_left)
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
if self.comb_iter_4_right is not None:
|
|
|
|
x_comb_iter_4_right = self.comb_iter_4_right(x_right)
|
|
|
|
else:
|
|
|
|
x_comb_iter_4_right = x_right
|
|
|
|
x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right
|
|
|
|
|
|
|
|
x_out = torch.cat(
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
[x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1)
|
|
|
|
return x_out
|
|
|
|
|
|
|
|
|
|
|
|
class CellStem0(CellBase):
|
|
|
|
|
|
|
|
def __init__(self, in_channels_left, out_channels_left, in_channels_right,
|
|
|
|
out_channels_right):
|
|
|
|
super(CellStem0, self).__init__()
|
|
|
|
self.conv_1x1 = ReluConvBn(in_channels_right, out_channels_right,
|
|
|
|
kernel_size=1)
|
|
|
|
self.comb_iter_0_left = BranchSeparables(in_channels_left,
|
|
|
|
out_channels_left,
|
|
|
|
kernel_size=5, stride=2,
|
|
|
|
stem_cell=True)
|
|
|
|
self.comb_iter_0_right = nn.Sequential(OrderedDict([
|
|
|
|
('max_pool', MaxPool(3, stride=2)),
|
|
|
|
('conv', nn.Conv2d(in_channels_left, out_channels_left,
|
|
|
|
kernel_size=1, bias=False)),
|
|
|
|
('bn', nn.BatchNorm2d(out_channels_left, eps=0.001)),
|
|
|
|
]))
|
|
|
|
self.comb_iter_1_left = BranchSeparables(out_channels_right,
|
|
|
|
out_channels_right,
|
|
|
|
kernel_size=7, stride=2)
|
|
|
|
self.comb_iter_1_right = MaxPool(3, stride=2)
|
|
|
|
self.comb_iter_2_left = BranchSeparables(out_channels_right,
|
|
|
|
out_channels_right,
|
|
|
|
kernel_size=5, stride=2)
|
|
|
|
self.comb_iter_2_right = BranchSeparables(out_channels_right,
|
|
|
|
out_channels_right,
|
|
|
|
kernel_size=3, stride=2)
|
|
|
|
self.comb_iter_3_left = BranchSeparables(out_channels_right,
|
|
|
|
out_channels_right,
|
|
|
|
kernel_size=3)
|
|
|
|
self.comb_iter_3_right = MaxPool(3, stride=2)
|
|
|
|
self.comb_iter_4_left = BranchSeparables(in_channels_right,
|
|
|
|
out_channels_right,
|
|
|
|
kernel_size=3, stride=2,
|
|
|
|
stem_cell=True)
|
|
|
|
self.comb_iter_4_right = ReluConvBn(out_channels_right,
|
|
|
|
out_channels_right,
|
|
|
|
kernel_size=1, stride=2)
|
|
|
|
|
|
|
|
def forward(self, x_left):
|
|
|
|
x_right = self.conv_1x1(x_left)
|
|
|
|
x_out = self.cell_forward(x_left, x_right)
|
|
|
|
return x_out
|
|
|
|
|
|
|
|
|
|
|
|
class Cell(CellBase):
|
|
|
|
|
|
|
|
def __init__(self, in_channels_left, out_channels_left, in_channels_right,
|
|
|
|
out_channels_right, is_reduction=False, zero_pad=False,
|
|
|
|
match_prev_layer_dimensions=False):
|
|
|
|
super(Cell, self).__init__()
|
|
|
|
|
|
|
|
# If `is_reduction` is set to `True` stride 2 is used for
|
|
|
|
# convolutional and pooling layers to reduce the spatial size of
|
|
|
|
# the output of a cell approximately by a factor of 2.
|
|
|
|
stride = 2 if is_reduction else 1
|
|
|
|
|
|
|
|
# If `match_prev_layer_dimensions` is set to `True`
|
|
|
|
# `FactorizedReduction` is used to reduce the spatial size
|
|
|
|
# of the left input of a cell approximately by a factor of 2.
|
|
|
|
self.match_prev_layer_dimensions = match_prev_layer_dimensions
|
|
|
|
if match_prev_layer_dimensions:
|
|
|
|
self.conv_prev_1x1 = FactorizedReduction(in_channels_left,
|
|
|
|
out_channels_left)
|
|
|
|
else:
|
|
|
|
self.conv_prev_1x1 = ReluConvBn(in_channels_left,
|
|
|
|
out_channels_left, kernel_size=1)
|
|
|
|
|
|
|
|
self.conv_1x1 = ReluConvBn(in_channels_right, out_channels_right,
|
|
|
|
kernel_size=1)
|
|
|
|
self.comb_iter_0_left = BranchSeparables(out_channels_left,
|
|
|
|
out_channels_left,
|
|
|
|
kernel_size=5, stride=stride,
|
|
|
|
zero_pad=zero_pad)
|
|
|
|
self.comb_iter_0_right = MaxPool(3, stride=stride, zero_pad=zero_pad)
|
|
|
|
self.comb_iter_1_left = BranchSeparables(out_channels_right,
|
|
|
|
out_channels_right,
|
|
|
|
kernel_size=7, stride=stride,
|
|
|
|
zero_pad=zero_pad)
|
|
|
|
self.comb_iter_1_right = MaxPool(3, stride=stride, zero_pad=zero_pad)
|
|
|
|
self.comb_iter_2_left = BranchSeparables(out_channels_right,
|
|
|
|
out_channels_right,
|
|
|
|
kernel_size=5, stride=stride,
|
|
|
|
zero_pad=zero_pad)
|
|
|
|
self.comb_iter_2_right = BranchSeparables(out_channels_right,
|
|
|
|
out_channels_right,
|
|
|
|
kernel_size=3, stride=stride,
|
|
|
|
zero_pad=zero_pad)
|
|
|
|
self.comb_iter_3_left = BranchSeparables(out_channels_right,
|
|
|
|
out_channels_right,
|
|
|
|
kernel_size=3)
|
|
|
|
self.comb_iter_3_right = MaxPool(3, stride=stride, zero_pad=zero_pad)
|
|
|
|
self.comb_iter_4_left = BranchSeparables(out_channels_left,
|
|
|
|
out_channels_left,
|
|
|
|
kernel_size=3, stride=stride,
|
|
|
|
zero_pad=zero_pad)
|
|
|
|
if is_reduction:
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
self.comb_iter_4_right = ReluConvBn(
|
|
|
|
out_channels_right, out_channels_right, kernel_size=1, stride=stride)
|
|
|
|
else:
|
|
|
|
self.comb_iter_4_right = None
|
|
|
|
|
|
|
|
def forward(self, x_left, x_right):
|
|
|
|
x_left = self.conv_prev_1x1(x_left)
|
|
|
|
x_right = self.conv_1x1(x_right)
|
|
|
|
x_out = self.cell_forward(x_left, x_right)
|
|
|
|
return x_out
|
|
|
|
|
|
|
|
|
|
|
|
class PNASNet5Large(nn.Module):
|
|
|
|
def __init__(self, num_classes=1001, in_chans=3, drop_rate=0.5, global_pool='avg'):
|
|
|
|
super(PNASNet5Large, self).__init__()
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.num_features = 4320
|
|
|
|
self.drop_rate = drop_rate
|
|
|
|
|
|
|
|
self.conv_0 = nn.Sequential(OrderedDict([
|
|
|
|
('conv', nn.Conv2d(in_chans, 96, kernel_size=3, stride=2, bias=False)),
|
|
|
|
('bn', nn.BatchNorm2d(96, eps=0.001))
|
|
|
|
]))
|
|
|
|
self.cell_stem_0 = CellStem0(in_channels_left=96, out_channels_left=54,
|
|
|
|
in_channels_right=96,
|
|
|
|
out_channels_right=54)
|
|
|
|
self.cell_stem_1 = Cell(in_channels_left=96, out_channels_left=108,
|
|
|
|
in_channels_right=270, out_channels_right=108,
|
|
|
|
match_prev_layer_dimensions=True,
|
|
|
|
is_reduction=True)
|
|
|
|
self.cell_0 = Cell(in_channels_left=270, out_channels_left=216,
|
|
|
|
in_channels_right=540, out_channels_right=216,
|
|
|
|
match_prev_layer_dimensions=True)
|
|
|
|
self.cell_1 = Cell(in_channels_left=540, out_channels_left=216,
|
|
|
|
in_channels_right=1080, out_channels_right=216)
|
|
|
|
self.cell_2 = Cell(in_channels_left=1080, out_channels_left=216,
|
|
|
|
in_channels_right=1080, out_channels_right=216)
|
|
|
|
self.cell_3 = Cell(in_channels_left=1080, out_channels_left=216,
|
|
|
|
in_channels_right=1080, out_channels_right=216)
|
|
|
|
self.cell_4 = Cell(in_channels_left=1080, out_channels_left=432,
|
|
|
|
in_channels_right=1080, out_channels_right=432,
|
|
|
|
is_reduction=True, zero_pad=True)
|
|
|
|
self.cell_5 = Cell(in_channels_left=1080, out_channels_left=432,
|
|
|
|
in_channels_right=2160, out_channels_right=432,
|
|
|
|
match_prev_layer_dimensions=True)
|
|
|
|
self.cell_6 = Cell(in_channels_left=2160, out_channels_left=432,
|
|
|
|
in_channels_right=2160, out_channels_right=432)
|
|
|
|
self.cell_7 = Cell(in_channels_left=2160, out_channels_left=432,
|
|
|
|
in_channels_right=2160, out_channels_right=432)
|
|
|
|
self.cell_8 = Cell(in_channels_left=2160, out_channels_left=864,
|
|
|
|
in_channels_right=2160, out_channels_right=864,
|
|
|
|
is_reduction=True)
|
|
|
|
self.cell_9 = Cell(in_channels_left=2160, out_channels_left=864,
|
|
|
|
in_channels_right=4320, out_channels_right=864,
|
|
|
|
match_prev_layer_dimensions=True)
|
|
|
|
self.cell_10 = Cell(in_channels_left=4320, out_channels_left=864,
|
|
|
|
in_channels_right=4320, out_channels_right=864)
|
|
|
|
self.cell_11 = Cell(in_channels_left=4320, out_channels_left=864,
|
|
|
|
in_channels_right=4320, out_channels_right=864)
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
self.last_linear = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
|
|
|
|
|
|
|
|
def get_classifier(self):
|
|
|
|
return self.last_linear
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
|
|
|
|
if num_classes:
|
|
|
|
num_features = self.num_features * self.global_pool.feat_mult()
|
|
|
|
self.last_linear = nn.Linear(num_features, num_classes)
|
|
|
|
else:
|
|
|
|
self.last_linear = nn.Identity()
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
x_conv_0 = self.conv_0(x)
|
|
|
|
x_stem_0 = self.cell_stem_0(x_conv_0)
|
|
|
|
x_stem_1 = self.cell_stem_1(x_conv_0, x_stem_0)
|
|
|
|
x_cell_0 = self.cell_0(x_stem_0, x_stem_1)
|
|
|
|
x_cell_1 = self.cell_1(x_stem_1, x_cell_0)
|
|
|
|
x_cell_2 = self.cell_2(x_cell_0, x_cell_1)
|
|
|
|
x_cell_3 = self.cell_3(x_cell_1, x_cell_2)
|
|
|
|
x_cell_4 = self.cell_4(x_cell_2, x_cell_3)
|
|
|
|
x_cell_5 = self.cell_5(x_cell_3, x_cell_4)
|
|
|
|
x_cell_6 = self.cell_6(x_cell_4, x_cell_5)
|
|
|
|
x_cell_7 = self.cell_7(x_cell_5, x_cell_6)
|
|
|
|
x_cell_8 = self.cell_8(x_cell_6, x_cell_7)
|
|
|
|
x_cell_9 = self.cell_9(x_cell_7, x_cell_8)
|
|
|
|
x_cell_10 = self.cell_10(x_cell_8, x_cell_9)
|
|
|
|
x_cell_11 = self.cell_11(x_cell_9, x_cell_10)
|
|
|
|
x = self.relu(x_cell_11)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.forward_features(x)
|
|
|
|
x = self.global_pool(x).flatten(1)
|
|
|
|
if self.drop_rate > 0:
|
|
|
|
x = F.dropout(x, self.drop_rate, training=self.training)
|
|
|
|
x = self.last_linear(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def pnasnet5large(pretrained=False, num_classes=1000, in_chans=3, **kwargs):
|
|
|
|
r"""PNASNet-5 model architecture from the
|
|
|
|
`"Progressive Neural Architecture Search"
|
|
|
|
<https://arxiv.org/abs/1712.00559>`_ paper.
|
|
|
|
"""
|
|
|
|
default_cfg = default_cfgs['pnasnet5large']
|
|
|
|
model = PNASNet5Large(num_classes=num_classes, in_chans=in_chans, **kwargs)
|
|
|
|
model.default_cfg = default_cfg
|
|
|
|
if pretrained:
|
|
|
|
load_pretrained(model, default_cfg, num_classes, in_chans)
|
|
|
|
|
|
|
|
return model
|