|
|
|
"""
|
|
|
|
BlurPool layer inspired by
|
|
|
|
- Kornia's Max_BlurPool2d
|
|
|
|
- Making Convolutional Networks Shift-Invariant Again :cite:`zhang2019shiftinvar`
|
|
|
|
|
|
|
|
Hacked together by Chris Ha and Ross Wightman
|
|
|
|
"""
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
import numpy as np
|
|
|
|
from .padding import get_padding
|
|
|
|
|
|
|
|
|
|
|
|
class BlurPool2d(nn.Module):
|
|
|
|
r"""Creates a module that computes blurs and downsample a given feature map.
|
|
|
|
See :cite:`zhang2019shiftinvar` for more details.
|
|
|
|
Corresponds to the Downsample class, which does blurring and subsampling
|
|
|
|
|
|
|
|
Args:
|
|
|
|
channels = Number of input channels
|
|
|
|
filt_size (int): binomial filter size for blurring. currently supports 3 (default) and 5.
|
|
|
|
stride (int): downsampling filter stride
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
torch.Tensor: the transformed tensor.
|
|
|
|
"""
|
|
|
|
def __init__(self, channels, filt_size=3, stride=2) -> None:
|
|
|
|
super(BlurPool2d, self).__init__()
|
|
|
|
assert filt_size > 1
|
|
|
|
self.channels = channels
|
|
|
|
self.filt_size = filt_size
|
|
|
|
self.stride = stride
|
|
|
|
self.padding = [get_padding(filt_size, stride, dilation=1)] * 4
|
|
|
|
coeffs = torch.tensor((np.poly1d((0.5, 0.5)) ** (self.filt_size - 1)).coeffs.astype(np.float32))
|
|
|
|
blur_filter = (coeffs[:, None] * coeffs[None, :])[None, None, :, :].repeat(self.channels, 1, 1, 1)
|
|
|
|
self.register_buffer('filt', blur_filter, persistent=False)
|
|
|
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
x = F.pad(x, self.padding, 'reflect')
|
|
|
|
return F.conv2d(x, self.filt, stride=self.stride, groups=x.shape[1])
|