Remove filter hack from BlurPool w/ non-persistent buffer. Use BlurPool2d instead of AntiAliasing.. for TResNet. Breaks PyTorch < 1.6.
parent
ddc743fdf8
commit
0d87650fea
@ -1,60 +0,0 @@
|
||||
import torch
|
||||
import torch.nn.parallel
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class AntiAliasDownsampleLayer(nn.Module):
|
||||
def __init__(self, channels: int = 0, filt_size: int = 3, stride: int = 2, no_jit: bool = False):
|
||||
super(AntiAliasDownsampleLayer, self).__init__()
|
||||
if no_jit:
|
||||
self.op = Downsample(channels, filt_size, stride)
|
||||
else:
|
||||
self.op = DownsampleJIT(channels, filt_size, stride)
|
||||
|
||||
# FIXME I should probably override _apply and clear DownsampleJIT filter cache for .cuda(), .half(), etc calls
|
||||
|
||||
def forward(self, x):
|
||||
return self.op(x)
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
class DownsampleJIT(object):
|
||||
def __init__(self, channels: int = 0, filt_size: int = 3, stride: int = 2):
|
||||
self.channels = channels
|
||||
self.stride = stride
|
||||
self.filt_size = filt_size
|
||||
assert self.filt_size == 3
|
||||
assert stride == 2
|
||||
self.filt = {} # lazy init by device for DataParallel compat
|
||||
|
||||
def _create_filter(self, like: torch.Tensor):
|
||||
filt = torch.tensor([1., 2., 1.], dtype=like.dtype, device=like.device)
|
||||
filt = filt[:, None] * filt[None, :]
|
||||
filt = filt / torch.sum(filt)
|
||||
return filt[None, None, :, :].repeat((self.channels, 1, 1, 1))
|
||||
|
||||
def __call__(self, input: torch.Tensor):
|
||||
input_pad = F.pad(input, (1, 1, 1, 1), 'reflect')
|
||||
filt = self.filt.get(str(input.device), self._create_filter(input))
|
||||
return F.conv2d(input_pad, filt, stride=2, padding=0, groups=input.shape[1])
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
def __init__(self, channels=None, filt_size=3, stride=2):
|
||||
super(Downsample, self).__init__()
|
||||
self.channels = channels
|
||||
self.filt_size = filt_size
|
||||
self.stride = stride
|
||||
|
||||
assert self.filt_size == 3
|
||||
filt = torch.tensor([1., 2., 1.])
|
||||
filt = filt[:, None] * filt[None, :]
|
||||
filt = filt / torch.sum(filt)
|
||||
|
||||
# self.filt = filt[None, None, :, :].repeat((self.channels, 1, 1, 1))
|
||||
self.register_buffer('filt', filt[None, None, :, :].repeat((self.channels, 1, 1, 1)))
|
||||
|
||||
def forward(self, input):
|
||||
input_pad = F.pad(input, (1, 1, 1, 1), 'reflect')
|
||||
return F.conv2d(input_pad, self.filt, stride=self.stride, padding=0, groups=input.shape[1])
|
Loading…
Reference in new issue