|
|
|
"""PyTorch SelecSLS Net example for ImageNet Classification
|
|
|
|
License: CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/legalcode)
|
|
|
|
Author: Dushyant Mehta (@mehtadushy)
|
|
|
|
|
|
|
|
SelecSLS (core) Network Architecture as proposed in "XNect: Real-time Multi-person 3D
|
|
|
|
Human Pose Estimation with a Single RGB Camera, Mehta et al."
|
|
|
|
https://arxiv.org/abs/1907.00837
|
|
|
|
|
|
|
|
Based on ResNet implementation in https://github.com/rwightman/pytorch-image-models
|
|
|
|
and SelecSLS Net implementation in https://github.com/mehtadushy/SelecSLS-Pytorch
|
|
|
|
"""
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
from typing import List
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
|
|
|
from .helpers import build_model_with_cfg
|
|
|
|
from .layers import create_classifier
|
|
|
|
from .registry import register_model
|
|
|
|
|
|
|
|
__all__ = ['SelecSLS'] # model_registry will add each entrypoint fn to this
|
|
|
|
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs):
|
|
|
|
return {
|
|
|
|
'url': url,
|
|
|
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (4, 4),
|
|
|
|
'crop_pct': 0.875, 'interpolation': 'bilinear',
|
|
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
|
|
|
|
'first_conv': 'stem', 'classifier': 'fc',
|
|
|
|
**kwargs
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
default_cfgs = {
|
|
|
|
'selecsls42': _cfg(
|
|
|
|
url='',
|
|
|
|
interpolation='bicubic'),
|
|
|
|
'selecsls42b': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls42b-8af30141.pth',
|
|
|
|
interpolation='bicubic'),
|
|
|
|
'selecsls60': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60-bbf87526.pth',
|
|
|
|
interpolation='bicubic'),
|
|
|
|
'selecsls60b': _cfg(
|
|
|
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60b-94e619b5.pth',
|
|
|
|
interpolation='bicubic'),
|
|
|
|
'selecsls84': _cfg(
|
|
|
|
url='',
|
|
|
|
interpolation='bicubic'),
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
class SequentialList(nn.Sequential):
|
|
|
|
|
|
|
|
def __init__(self, *args):
|
|
|
|
super(SequentialList, self).__init__(*args)
|
|
|
|
|
|
|
|
@torch.jit._overload_method # noqa: F811
|
|
|
|
def forward(self, x):
|
|
|
|
# type: (List[torch.Tensor]) -> (List[torch.Tensor])
|
|
|
|
pass
|
|
|
|
|
|
|
|
@torch.jit._overload_method # noqa: F811
|
|
|
|
def forward(self, x):
|
|
|
|
# type: (torch.Tensor) -> (List[torch.Tensor])
|
|
|
|
pass
|
|
|
|
|
|
|
|
def forward(self, x) -> List[torch.Tensor]:
|
|
|
|
for module in self:
|
|
|
|
x = module(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class SelectSeq(nn.Module):
|
|
|
|
def __init__(self, mode='index', index=0):
|
|
|
|
super(SelectSeq, self).__init__()
|
|
|
|
self.mode = mode
|
|
|
|
self.index = index
|
|
|
|
|
|
|
|
@torch.jit._overload_method # noqa: F811
|
|
|
|
def forward(self, x):
|
|
|
|
# type: (List[torch.Tensor]) -> (torch.Tensor)
|
|
|
|
pass
|
|
|
|
|
|
|
|
@torch.jit._overload_method # noqa: F811
|
|
|
|
def forward(self, x):
|
|
|
|
# type: (Tuple[torch.Tensor]) -> (torch.Tensor)
|
|
|
|
pass
|
|
|
|
|
|
|
|
def forward(self, x) -> torch.Tensor:
|
|
|
|
if self.mode == 'index':
|
|
|
|
return x[self.index]
|
|
|
|
else:
|
|
|
|
return torch.cat(x, dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
def conv_bn(in_chs, out_chs, k=3, stride=1, padding=None, dilation=1):
|
|
|
|
if padding is None:
|
|
|
|
padding = ((stride - 1) + dilation * (k - 1)) // 2
|
|
|
|
return nn.Sequential(
|
|
|
|
nn.Conv2d(in_chs, out_chs, k, stride, padding=padding, dilation=dilation, bias=False),
|
|
|
|
nn.BatchNorm2d(out_chs),
|
|
|
|
nn.ReLU(inplace=True)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class SelecSLSBlock(nn.Module):
|
|
|
|
def __init__(self, in_chs, skip_chs, mid_chs, out_chs, is_first, stride, dilation=1):
|
|
|
|
super(SelecSLSBlock, self).__init__()
|
|
|
|
self.stride = stride
|
|
|
|
self.is_first = is_first
|
|
|
|
assert stride in [1, 2]
|
|
|
|
|
|
|
|
# Process input with 4 conv blocks with the same number of input and output channels
|
|
|
|
self.conv1 = conv_bn(in_chs, mid_chs, 3, stride, dilation=dilation)
|
|
|
|
self.conv2 = conv_bn(mid_chs, mid_chs, 1)
|
|
|
|
self.conv3 = conv_bn(mid_chs, mid_chs // 2, 3)
|
|
|
|
self.conv4 = conv_bn(mid_chs // 2, mid_chs, 1)
|
|
|
|
self.conv5 = conv_bn(mid_chs, mid_chs // 2, 3)
|
|
|
|
self.conv6 = conv_bn(2 * mid_chs + (0 if is_first else skip_chs), out_chs, 1)
|
|
|
|
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]:
|
|
|
|
if not isinstance(x, list):
|
|
|
|
x = [x]
|
|
|
|
assert len(x) in [1, 2]
|
|
|
|
|
|
|
|
d1 = self.conv1(x[0])
|
|
|
|
d2 = self.conv3(self.conv2(d1))
|
|
|
|
d3 = self.conv5(self.conv4(d2))
|
|
|
|
if self.is_first:
|
|
|
|
out = self.conv6(torch.cat([d1, d2, d3], 1))
|
|
|
|
return [out, out]
|
|
|
|
else:
|
|
|
|
return [self.conv6(torch.cat([d1, d2, d3, x[1]], 1)), x[1]]
|
|
|
|
|
|
|
|
|
|
|
|
class SelecSLS(nn.Module):
|
|
|
|
"""SelecSLS42 / SelecSLS60 / SelecSLS84
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
cfg : network config dictionary specifying block type, feature, and head args
|
|
|
|
num_classes : int, default 1000
|
|
|
|
Number of classification classes.
|
|
|
|
in_chans : int, default 3
|
|
|
|
Number of input (color) channels.
|
|
|
|
drop_rate : float, default 0.
|
|
|
|
Dropout probability before classifier, for training
|
|
|
|
global_pool : str, default 'avg'
|
|
|
|
Global pooling type. One of 'avg', 'max', 'avgmax', 'catavgmax'
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, cfg, num_classes=1000, in_chans=3, drop_rate=0.0, global_pool='avg'):
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.drop_rate = drop_rate
|
|
|
|
super(SelecSLS, self).__init__()
|
|
|
|
|
|
|
|
self.stem = conv_bn(in_chans, 32, stride=2)
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
self.features = SequentialList(*[cfg['block'](*block_args) for block_args in cfg['features']])
|
|
|
|
self.from_seq = SelectSeq() # from List[tensor] -> Tensor in module compatible way
|
|
|
|
self.head = nn.Sequential(*[conv_bn(*conv_args) for conv_args in cfg['head']])
|
|
|
|
self.num_features = cfg['num_features']
|
|
|
|
self.feature_info = cfg['feature_info']
|
|
|
|
|
|
|
|
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
|
|
|
|
|
|
|
|
for n, m in self.named_modules():
|
|
|
|
if isinstance(m, nn.Conv2d):
|
|
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
|
|
nn.init.constant_(m.weight, 1.)
|
|
|
|
nn.init.constant_(m.bias, 0.)
|
|
|
|
|
|
|
|
def get_classifier(self):
|
|
|
|
return self.fc
|
|
|
|
|
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'):
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
x = self.stem(x)
|
|
|
|
x = self.features(x)
|
|
|
|
x = self.head(self.from_seq(x))
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.forward_features(x)
|
|
|
|
x = self.global_pool(x)
|
|
|
|
if self.drop_rate > 0.:
|
|
|
|
x = F.dropout(x, p=self.drop_rate, training=self.training)
|
|
|
|
x = self.fc(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def _create_selecsls(variant, pretrained, model_kwargs):
|
|
|
|
cfg = {}
|
|
|
|
feature_info = [dict(num_chs=32, reduction=2, module='stem.2')]
|
|
|
|
if variant.startswith('selecsls42'):
|
|
|
|
cfg['block'] = SelecSLSBlock
|
|
|
|
# Define configuration of the network after the initial neck
|
|
|
|
cfg['features'] = [
|
|
|
|
# in_chs, skip_chs, mid_chs, out_chs, is_first, stride
|
|
|
|
(32, 0, 64, 64, True, 2),
|
|
|
|
(64, 64, 64, 128, False, 1),
|
|
|
|
(128, 0, 144, 144, True, 2),
|
|
|
|
(144, 144, 144, 288, False, 1),
|
|
|
|
(288, 0, 304, 304, True, 2),
|
|
|
|
(304, 304, 304, 480, False, 1),
|
|
|
|
]
|
|
|
|
feature_info.extend([
|
|
|
|
dict(num_chs=128, reduction=4, module='features.1'),
|
|
|
|
dict(num_chs=288, reduction=8, module='features.3'),
|
|
|
|
dict(num_chs=480, reduction=16, module='features.5'),
|
|
|
|
])
|
|
|
|
# Head can be replaced with alternative configurations depending on the problem
|
|
|
|
feature_info.append(dict(num_chs=1024, reduction=32, module='head.1'))
|
|
|
|
if variant == 'selecsls42b':
|
|
|
|
cfg['head'] = [
|
|
|
|
(480, 960, 3, 2),
|
|
|
|
(960, 1024, 3, 1),
|
|
|
|
(1024, 1280, 3, 2),
|
|
|
|
(1280, 1024, 1, 1),
|
|
|
|
]
|
|
|
|
feature_info.append(dict(num_chs=1024, reduction=64, module='head.3'))
|
|
|
|
cfg['num_features'] = 1024
|
|
|
|
else:
|
|
|
|
cfg['head'] = [
|
|
|
|
(480, 960, 3, 2),
|
|
|
|
(960, 1024, 3, 1),
|
|
|
|
(1024, 1024, 3, 2),
|
|
|
|
(1024, 1280, 1, 1),
|
|
|
|
]
|
|
|
|
feature_info.append(dict(num_chs=1280, reduction=64, module='head.3'))
|
|
|
|
cfg['num_features'] = 1280
|
|
|
|
|
|
|
|
elif variant.startswith('selecsls60'):
|
|
|
|
cfg['block'] = SelecSLSBlock
|
|
|
|
# Define configuration of the network after the initial neck
|
|
|
|
cfg['features'] = [
|
|
|
|
# in_chs, skip_chs, mid_chs, out_chs, is_first, stride
|
|
|
|
(32, 0, 64, 64, True, 2),
|
|
|
|
(64, 64, 64, 128, False, 1),
|
|
|
|
(128, 0, 128, 128, True, 2),
|
|
|
|
(128, 128, 128, 128, False, 1),
|
|
|
|
(128, 128, 128, 288, False, 1),
|
|
|
|
(288, 0, 288, 288, True, 2),
|
|
|
|
(288, 288, 288, 288, False, 1),
|
|
|
|
(288, 288, 288, 288, False, 1),
|
|
|
|
(288, 288, 288, 416, False, 1),
|
|
|
|
]
|
|
|
|
feature_info.extend([
|
|
|
|
dict(num_chs=128, reduction=4, module='features.1'),
|
|
|
|
dict(num_chs=288, reduction=8, module='features.4'),
|
|
|
|
dict(num_chs=416, reduction=16, module='features.8'),
|
|
|
|
])
|
|
|
|
# Head can be replaced with alternative configurations depending on the problem
|
|
|
|
feature_info.append(dict(num_chs=1024, reduction=32, module='head.1'))
|
|
|
|
if variant == 'selecsls60b':
|
|
|
|
cfg['head'] = [
|
|
|
|
(416, 756, 3, 2),
|
|
|
|
(756, 1024, 3, 1),
|
|
|
|
(1024, 1280, 3, 2),
|
|
|
|
(1280, 1024, 1, 1),
|
|
|
|
]
|
|
|
|
feature_info.append(dict(num_chs=1024, reduction=64, module='head.3'))
|
|
|
|
cfg['num_features'] = 1024
|
|
|
|
else:
|
|
|
|
cfg['head'] = [
|
|
|
|
(416, 756, 3, 2),
|
|
|
|
(756, 1024, 3, 1),
|
|
|
|
(1024, 1024, 3, 2),
|
|
|
|
(1024, 1280, 1, 1),
|
|
|
|
]
|
|
|
|
feature_info.append(dict(num_chs=1280, reduction=64, module='head.3'))
|
|
|
|
cfg['num_features'] = 1280
|
|
|
|
|
|
|
|
elif variant == 'selecsls84':
|
|
|
|
cfg['block'] = SelecSLSBlock
|
|
|
|
# Define configuration of the network after the initial neck
|
|
|
|
cfg['features'] = [
|
|
|
|
# in_chs, skip_chs, mid_chs, out_chs, is_first, stride
|
|
|
|
(32, 0, 64, 64, True, 2),
|
|
|
|
(64, 64, 64, 144, False, 1),
|
|
|
|
(144, 0, 144, 144, True, 2),
|
|
|
|
(144, 144, 144, 144, False, 1),
|
|
|
|
(144, 144, 144, 144, False, 1),
|
|
|
|
(144, 144, 144, 144, False, 1),
|
|
|
|
(144, 144, 144, 304, False, 1),
|
|
|
|
(304, 0, 304, 304, True, 2),
|
|
|
|
(304, 304, 304, 304, False, 1),
|
|
|
|
(304, 304, 304, 304, False, 1),
|
|
|
|
(304, 304, 304, 304, False, 1),
|
|
|
|
(304, 304, 304, 304, False, 1),
|
|
|
|
(304, 304, 304, 512, False, 1),
|
|
|
|
]
|
|
|
|
feature_info.extend([
|
|
|
|
dict(num_chs=144, reduction=4, module='features.1'),
|
|
|
|
dict(num_chs=304, reduction=8, module='features.6'),
|
|
|
|
dict(num_chs=512, reduction=16, module='features.12'),
|
|
|
|
])
|
|
|
|
# Head can be replaced with alternative configurations depending on the problem
|
|
|
|
cfg['head'] = [
|
|
|
|
(512, 960, 3, 2),
|
|
|
|
(960, 1024, 3, 1),
|
|
|
|
(1024, 1024, 3, 2),
|
|
|
|
(1024, 1280, 3, 1),
|
|
|
|
]
|
|
|
|
cfg['num_features'] = 1280
|
|
|
|
feature_info.extend([
|
|
|
|
dict(num_chs=1024, reduction=32, module='head.1'),
|
|
|
|
dict(num_chs=1280, reduction=64, module='head.3')
|
|
|
|
])
|
|
|
|
else:
|
|
|
|
raise ValueError('Invalid net configuration ' + variant + ' !!!')
|
|
|
|
cfg['feature_info'] = feature_info
|
|
|
|
|
|
|
|
# this model can do 6 feature levels by default, unlike most others, leave as 0-4 to avoid surprises?
|
|
|
|
return build_model_with_cfg(
|
|
|
|
SelecSLS, variant, pretrained, default_cfg=default_cfgs[variant], model_cfg=cfg,
|
|
|
|
feature_cfg=dict(out_indices=(0, 1, 2, 3, 4), flatten_sequential=True), **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def selecsls42(pretrained=False, **kwargs):
|
|
|
|
"""Constructs a SelecSLS42 model.
|
|
|
|
"""
|
|
|
|
return _create_selecsls('selecsls42', pretrained, kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def selecsls42b(pretrained=False, **kwargs):
|
|
|
|
"""Constructs a SelecSLS42_B model.
|
|
|
|
"""
|
|
|
|
return _create_selecsls('selecsls42b', pretrained, kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def selecsls60(pretrained=False, **kwargs):
|
|
|
|
"""Constructs a SelecSLS60 model.
|
|
|
|
"""
|
|
|
|
return _create_selecsls('selecsls60', pretrained, kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def selecsls60b(pretrained=False, **kwargs):
|
|
|
|
"""Constructs a SelecSLS60_B model.
|
|
|
|
"""
|
|
|
|
return _create_selecsls('selecsls60b', pretrained, kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def selecsls84(pretrained=False, **kwargs):
|
|
|
|
"""Constructs a SelecSLS84 model.
|
|
|
|
"""
|
|
|
|
return _create_selecsls('selecsls84', pretrained, kwargs)
|