|
|
|
""" Split BatchNorm
|
|
|
|
|
|
|
|
A PyTorch BatchNorm layer that splits input batch into N equal parts and passes each through
|
|
|
|
a separate BN layer. The first split is passed through the parent BN layers with weight/bias
|
|
|
|
keys the same as the original BN. All other splits pass through BN sub-layers under the '.aux_bn'
|
|
|
|
namespace.
|
|
|
|
|
|
|
|
This allows easily removing the auxiliary BN layers after training to efficiently
|
|
|
|
achieve the 'Auxiliary BatchNorm' as described in the AdvProp Paper, section 4.2,
|
|
|
|
'Disentangled Learning via An Auxiliary BN'
|
|
|
|
|
|
|
|
Hacked together by Ross Wightman
|
|
|
|
"""
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
|
|
class SplitBatchNorm2d(torch.nn.BatchNorm2d):
|
|
|
|
|
|
|
|
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True,
|
|
|
|
track_running_stats=True, num_splits=2):
|
|
|
|
super().__init__(num_features, eps, momentum, affine, track_running_stats)
|
|
|
|
assert num_splits > 1, 'Should have at least one aux BN layer (num_splits at least 2)'
|
|
|
|
self.num_splits = num_splits
|
|
|
|
self.aux_bn = nn.ModuleList([
|
|
|
|
nn.BatchNorm2d(num_features, eps, momentum, affine, track_running_stats) for _ in range(num_splits - 1)])
|
|
|
|
|
|
|
|
def forward(self, input: torch.Tensor):
|
|
|
|
if self.training: # aux BN only relevant while training
|
|
|
|
split_size = input.shape[0] // self.num_splits
|
|
|
|
assert input.shape[0] == split_size * self.num_splits, "batch size must be evenly divisible by num_splits"
|
|
|
|
split_input = input.split(split_size)
|
|
|
|
x = [super().forward(split_input[0])]
|
|
|
|
for i, a in enumerate(self.aux_bn):
|
|
|
|
x.append(a(split_input[i + 1]))
|
|
|
|
return torch.cat(x, dim=0)
|
|
|
|
else:
|
|
|
|
return super().forward(input)
|
|
|
|
|
|
|
|
|
|
|
|
def convert_splitbn_model(module, num_splits=2):
|
|
|
|
"""
|
|
|
|
Recursively traverse module and its children to replace all instances of
|
|
|
|
``torch.nn.modules.batchnorm._BatchNorm`` with `SplitBatchnorm2d`.
|
|
|
|
Args:
|
|
|
|
module (torch.nn.Module): input module
|
|
|
|
num_splits: number of separate batchnorm layers to split input across
|
|
|
|
Example::
|
|
|
|
>>> # model is an instance of torch.nn.Module
|
|
|
|
>>> model = timm.models.convert_splitbn_model(model, num_splits=2)
|
|
|
|
"""
|
|
|
|
mod = module
|
|
|
|
if isinstance(module, torch.nn.modules.instancenorm._InstanceNorm):
|
|
|
|
return module
|
|
|
|
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
|
|
|
|
mod = SplitBatchNorm2d(
|
|
|
|
module.num_features, module.eps, module.momentum, module.affine,
|
|
|
|
module.track_running_stats, num_splits=num_splits)
|
|
|
|
mod.running_mean = module.running_mean
|
|
|
|
mod.running_var = module.running_var
|
|
|
|
mod.num_batches_tracked = module.num_batches_tracked
|
|
|
|
if module.affine:
|
|
|
|
mod.weight.data = module.weight.data.clone().detach()
|
|
|
|
mod.bias.data = module.bias.data.clone().detach()
|
|
|
|
for aux in mod.aux_bn:
|
|
|
|
aux.running_mean = module.running_mean.clone()
|
|
|
|
aux.running_var = module.running_var.clone()
|
|
|
|
aux.num_batches_tracked = module.num_batches_tracked.clone()
|
|
|
|
if module.affine:
|
|
|
|
aux.weight.data = module.weight.data.clone().detach()
|
|
|
|
aux.bias.data = module.bias.data.clone().detach()
|
|
|
|
for name, child in module.named_children():
|
|
|
|
mod.add_module(name, convert_splitbn_model(child, num_splits=num_splits))
|
|
|
|
del module
|
|
|
|
return mod
|