|
|
|
@ -6,9 +6,9 @@ import torch.nn.functional as F
|
|
|
|
|
class SplitBatchNorm2d(torch.nn.BatchNorm2d):
|
|
|
|
|
|
|
|
|
|
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True,
|
|
|
|
|
track_running_stats=True, num_splits=1):
|
|
|
|
|
track_running_stats=True, num_splits=2):
|
|
|
|
|
super().__init__(num_features, eps, momentum, affine, track_running_stats)
|
|
|
|
|
assert num_splits >= 2, 'Should have at least one aux BN layer (num_splits at least 2)'
|
|
|
|
|
assert num_splits > 1, 'Should have at least one aux BN layer (num_splits at least 2)'
|
|
|
|
|
self.num_splits = num_splits
|
|
|
|
|
self.aux_bn = nn.ModuleList([
|
|
|
|
|
nn.BatchNorm2d(num_features, eps, momentum, affine, track_running_stats) for _ in range(num_splits - 1)])
|
|
|
|
@ -35,8 +35,7 @@ def convert_splitbn_model(module, num_splits=2):
|
|
|
|
|
num_splits: number of separate batchnorm layers to split input across
|
|
|
|
|
Example::
|
|
|
|
|
>>> # model is an instance of torch.nn.Module
|
|
|
|
|
>>> import apex
|
|
|
|
|
>>> sync_bn_model = timm.models.convert_splitbn_model(model, num_splits=2)
|
|
|
|
|
>>> model = timm.models.convert_splitbn_model(model, num_splits=2)
|
|
|
|
|
"""
|
|
|
|
|
mod = module
|
|
|
|
|
if isinstance(module, torch.nn.modules.instancenorm._InstanceNorm):
|
|
|
|
|