Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
from .activations import *
|
|
|
|
from .activations_jit import *
|
|
|
|
from .activations_me import *
|
|
|
|
from .config import is_exportable, is_scriptable, is_no_jit
|
|
|
|
|
|
|
|
|
|
|
|
_ACT_FN_DEFAULT = dict(
|
|
|
|
swish=swish,
|
|
|
|
mish=mish,
|
|
|
|
relu=F.relu,
|
|
|
|
relu6=F.relu6,
|
|
|
|
leaky_relu=F.leaky_relu,
|
|
|
|
elu=F.elu,
|
|
|
|
prelu=F.prelu,
|
|
|
|
celu=F.celu,
|
|
|
|
selu=F.selu,
|
|
|
|
gelu=F.gelu,
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
sigmoid=sigmoid,
|
|
|
|
tanh=tanh,
|
|
|
|
hard_sigmoid=hard_sigmoid,
|
|
|
|
hard_swish=hard_swish,
|
|
|
|
hard_mish=hard_mish,
|
|
|
|
)
|
|
|
|
|
|
|
|
_ACT_FN_JIT = dict(
|
|
|
|
swish=swish_jit,
|
|
|
|
mish=mish_jit,
|
|
|
|
hard_sigmoid=hard_sigmoid_jit,
|
|
|
|
hard_swish=hard_swish_jit,
|
|
|
|
hard_mish=hard_mish_jit
|
|
|
|
)
|
|
|
|
|
|
|
|
_ACT_FN_ME = dict(
|
|
|
|
swish=swish_me,
|
|
|
|
mish=mish_me,
|
|
|
|
hard_sigmoid=hard_sigmoid_me,
|
|
|
|
hard_swish=hard_swish_me,
|
|
|
|
hard_mish=hard_mish_me,
|
|
|
|
)
|
|
|
|
|
|
|
|
_ACT_LAYER_DEFAULT = dict(
|
|
|
|
swish=Swish,
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
mish=Mish,
|
|
|
|
relu=nn.ReLU,
|
|
|
|
relu6=nn.ReLU6,
|
|
|
|
elu=nn.ELU,
|
|
|
|
prelu=nn.PReLU,
|
|
|
|
celu=nn.CELU,
|
|
|
|
selu=nn.SELU,
|
|
|
|
gelu=nn.GELU,
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
sigmoid=Sigmoid,
|
|
|
|
tanh=Tanh,
|
|
|
|
hard_sigmoid=HardSigmoid,
|
|
|
|
hard_swish=HardSwish,
|
|
|
|
hard_mish=HardMish,
|
|
|
|
)
|
|
|
|
|
|
|
|
_ACT_LAYER_JIT = dict(
|
|
|
|
swish=SwishJit,
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
mish=MishJit,
|
|
|
|
hard_sigmoid=HardSigmoidJit,
|
|
|
|
hard_swish=HardSwishJit,
|
|
|
|
hard_mish=HardMishJit
|
|
|
|
)
|
|
|
|
|
|
|
|
_ACT_LAYER_ME = dict(
|
|
|
|
swish=SwishMe,
|
|
|
|
mish=MishMe,
|
|
|
|
hard_sigmoid=HardSigmoidMe,
|
|
|
|
hard_swish=HardSwishMe,
|
|
|
|
hard_mish=HardMishMe,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def get_act_fn(name='relu'):
|
|
|
|
""" Activation Function Factory
|
|
|
|
Fetching activation fns by name with this function allows export or torch script friendly
|
|
|
|
functions to be returned dynamically based on current config.
|
|
|
|
"""
|
|
|
|
if not name:
|
|
|
|
return None
|
|
|
|
if not (is_no_jit() or is_exportable() or is_scriptable()):
|
|
|
|
# If not exporting or scripting the model, first look for a memory-efficient version with
|
|
|
|
# custom autograd, then fallback
|
|
|
|
if name in _ACT_FN_ME:
|
|
|
|
return _ACT_FN_ME[name]
|
|
|
|
if not is_no_jit():
|
|
|
|
if name in _ACT_FN_JIT:
|
|
|
|
return _ACT_FN_JIT[name]
|
|
|
|
return _ACT_FN_DEFAULT[name]
|
|
|
|
|
|
|
|
|
|
|
|
def get_act_layer(name='relu'):
|
|
|
|
""" Activation Layer Factory
|
|
|
|
Fetching activation layers by name with this function allows export or torch script friendly
|
|
|
|
functions to be returned dynamically based on current config.
|
|
|
|
"""
|
|
|
|
if not name:
|
|
|
|
return None
|
|
|
|
if not (is_no_jit() or is_exportable() or is_scriptable()):
|
|
|
|
if name in _ACT_LAYER_ME:
|
|
|
|
return _ACT_LAYER_ME[name]
|
|
|
|
if not is_no_jit():
|
|
|
|
if name in _ACT_LAYER_JIT:
|
|
|
|
return _ACT_LAYER_JIT[name]
|
|
|
|
return _ACT_LAYER_DEFAULT[name]
|
|
|
|
|
|
|
|
|
|
|
|
def create_act_layer(name, inplace=False, **kwargs):
|
|
|
|
act_layer = get_act_layer(name)
|
|
|
|
if act_layer is not None:
|
|
|
|
return act_layer(inplace=inplace, **kwargs)
|
|
|
|
else:
|
|
|
|
return None
|