Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
import torch
|
|
|
|
from torch import nn as nn
|
|
|
|
|
|
|
|
try:
|
|
|
|
from inplace_abn.functions import inplace_abn, inplace_abn_sync
|
|
|
|
has_iabn = True
|
|
|
|
except ImportError:
|
|
|
|
has_iabn = False
|
|
|
|
|
|
|
|
def inplace_abn(x, weight, bias, running_mean, running_var,
|
|
|
|
training=True, momentum=0.1, eps=1e-05, activation="leaky_relu", activation_param=0.01):
|
|
|
|
raise ImportError(
|
|
|
|
"Please install InplaceABN:'pip install git+https://github.com/mapillary/inplace_abn.git@v1.0.11'")
|
|
|
|
|
|
|
|
def inplace_abn_sync(**kwargs):
|
|
|
|
inplace_abn(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
class InplaceAbn(nn.Module):
|
|
|
|
"""Activated Batch Normalization
|
|
|
|
|
|
|
|
This gathers a BatchNorm and an activation function in a single module
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
num_features : int
|
|
|
|
Number of feature channels in the input and output.
|
|
|
|
eps : float
|
|
|
|
Small constant to prevent numerical issues.
|
|
|
|
momentum : float
|
|
|
|
Momentum factor applied to compute running statistics.
|
|
|
|
affine : bool
|
|
|
|
If `True` apply learned scale and shift transformation after normalization.
|
|
|
|
act_layer : str or nn.Module type
|
|
|
|
Name or type of the activation functions, one of: `leaky_relu`, `elu`
|
|
|
|
act_param : float
|
|
|
|
Negative slope for the `leaky_relu` activation.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, apply_act=True,
|
|
|
|
act_layer="leaky_relu", act_param=0.01, drop_block=None):
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
super(InplaceAbn, self).__init__()
|
|
|
|
self.num_features = num_features
|
|
|
|
self.affine = affine
|
|
|
|
self.eps = eps
|
|
|
|
self.momentum = momentum
|
|
|
|
if apply_act:
|
|
|
|
if isinstance(act_layer, str):
|
|
|
|
assert act_layer in ('leaky_relu', 'elu', 'identity', '')
|
|
|
|
self.act_name = act_layer if act_layer else 'identity'
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
else:
|
|
|
|
# convert act layer passed as type to string
|
|
|
|
if act_layer == nn.ELU:
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
self.act_name = 'elu'
|
|
|
|
elif act_layer == nn.LeakyReLU:
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
self.act_name = 'leaky_relu'
|
|
|
|
elif act_layer == nn.Identity:
|
|
|
|
self.act_name = 'identity'
|
Monster commit, activation refactor, VoVNet, norm_act improvements, more
* refactor activations into basic PyTorch, jit scripted, and memory efficient custom auto
* implement hard-mish, better grad for hard-swish
* add initial VovNet V1/V2 impl, fix #151
* VovNet and DenseNet first models to use NormAct layers (support BatchNormAct2d, EvoNorm, InplaceIABN)
* Wrap IABN for any models that use it
* make more models torchscript compatible (DPN, PNasNet, Res2Net, SelecSLS) and add tests
5 years ago
|
|
|
else:
|
|
|
|
assert False, f'Invalid act layer {act_layer.__name__} for IABN'
|
|
|
|
else:
|
|
|
|
self.act_name = 'identity'
|
|
|
|
self.act_param = act_param
|
|
|
|
if self.affine:
|
|
|
|
self.weight = nn.Parameter(torch.ones(num_features))
|
|
|
|
self.bias = nn.Parameter(torch.zeros(num_features))
|
|
|
|
else:
|
|
|
|
self.register_parameter('weight', None)
|
|
|
|
self.register_parameter('bias', None)
|
|
|
|
self.register_buffer('running_mean', torch.zeros(num_features))
|
|
|
|
self.register_buffer('running_var', torch.ones(num_features))
|
|
|
|
self.reset_parameters()
|
|
|
|
|
|
|
|
def reset_parameters(self):
|
|
|
|
nn.init.constant_(self.running_mean, 0)
|
|
|
|
nn.init.constant_(self.running_var, 1)
|
|
|
|
if self.affine:
|
|
|
|
nn.init.constant_(self.weight, 1)
|
|
|
|
nn.init.constant_(self.bias, 0)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
output = inplace_abn(
|
|
|
|
x, self.weight, self.bias, self.running_mean, self.running_var,
|
|
|
|
self.training, self.momentum, self.eps, self.act_name, self.act_param)
|
|
|
|
if isinstance(output, tuple):
|
|
|
|
output = output[0]
|
|
|
|
return output
|