|
|
// For licensing see accompanying LICENSE.md file.
|
|
|
// Copyright (C) 2022 Apple Inc. All Rights Reserved.
|
|
|
|
|
|
import CoreML
|
|
|
|
|
|
@available(iOS 16.2, macOS 13.1, *)
|
|
|
public protocol Scheduler {
|
|
|
/// Number of diffusion steps performed during training
|
|
|
var trainStepCount: Int { get }
|
|
|
|
|
|
/// Number of inference steps to be performed
|
|
|
var inferenceStepCount: Int { get }
|
|
|
|
|
|
/// Training diffusion time steps index by inference time step
|
|
|
var timeSteps: [Int] { get }
|
|
|
|
|
|
/// Training diffusion time steps index by inference time step
|
|
|
func calculateTimesteps(strength: Float?) -> [Int]
|
|
|
|
|
|
/// Schedule of betas which controls the amount of noise added at each timestep
|
|
|
var betas: [Float] { get }
|
|
|
|
|
|
/// 1 - betas
|
|
|
var alphas: [Float] { get }
|
|
|
|
|
|
/// Cached cumulative product of alphas
|
|
|
var alphasCumProd: [Float] { get }
|
|
|
|
|
|
/// Standard deviation of the initial noise distribution
|
|
|
var initNoiseSigma: Float { get }
|
|
|
|
|
|
/// Compute a de-noised image sample and step scheduler state
|
|
|
///
|
|
|
/// - Parameters:
|
|
|
/// - output: The predicted residual noise output of learned diffusion model
|
|
|
/// - timeStep: The current time step in the diffusion chain
|
|
|
/// - sample: The current input sample to the diffusion model
|
|
|
/// - Returns: Predicted de-noised sample at the previous time step
|
|
|
/// - Postcondition: The scheduler state is updated.
|
|
|
/// The state holds the current sample and history of model output noise residuals
|
|
|
func step(
|
|
|
output: MLShapedArray<Float32>,
|
|
|
timeStep t: Int,
|
|
|
sample s: MLShapedArray<Float32>
|
|
|
) -> MLShapedArray<Float32>
|
|
|
}
|
|
|
|
|
|
@available(iOS 16.2, macOS 13.1, *)
|
|
|
public extension Scheduler {
|
|
|
var initNoiseSigma: Float { 1 }
|
|
|
}
|
|
|
|
|
|
@available(iOS 16.2, macOS 13.1, *)
|
|
|
public extension Scheduler {
|
|
|
/// Compute weighted sum of shaped arrays of equal shapes
|
|
|
///
|
|
|
/// - Parameters:
|
|
|
/// - weights: The weights each array is multiplied by
|
|
|
/// - values: The arrays to be weighted and summed
|
|
|
/// - Returns: sum_i weights[i]*values[i]
|
|
|
func weightedSum(_ weights: [Double], _ values: [MLShapedArray<Float32>]) -> MLShapedArray<Float32> {
|
|
|
assert(weights.count > 1 && values.count == weights.count)
|
|
|
assert(values.allSatisfy({ $0.scalarCount == values.first!.scalarCount }))
|
|
|
var w = Float(weights.first!)
|
|
|
var scalars = values.first!.scalars.map({ $0 * w })
|
|
|
for next in 1 ..< values.count {
|
|
|
w = Float(weights[next])
|
|
|
let nextScalars = values[next].scalars
|
|
|
for i in 0 ..< scalars.count {
|
|
|
scalars[i] += w * nextScalars[i]
|
|
|
}
|
|
|
}
|
|
|
return MLShapedArray(scalars: scalars, shape: values.first!.shape)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// MARK: - Image2Image
|
|
|
|
|
|
@available(iOS 16.2, macOS 13.1, *)
|
|
|
public extension Scheduler {
|
|
|
|
|
|
func calculateAlphasCumprod(strength: Float) -> AlphasCumprodCalculation {
|
|
|
AlphasCumprodCalculation(
|
|
|
alphasCumprod: alphasCumProd,
|
|
|
timesteps: trainStepCount,
|
|
|
steps: inferenceStepCount,
|
|
|
strength: strength)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// MARK: - Timesteps
|
|
|
|
|
|
@available(iOS 16.2, macOS 13.1, *)
|
|
|
public extension Scheduler {
|
|
|
func calculateTimesteps(strength: Float?) -> [Int] {
|
|
|
guard let strength else { return timeSteps }
|
|
|
let startStep = max(inferenceStepCount - Int(Float(inferenceStepCount) * strength), 0)
|
|
|
let actualTimesteps = Array(timeSteps[startStep...])
|
|
|
return actualTimesteps
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// MARK: - BetaSchedule
|
|
|
|
|
|
/// How to map a beta range to a sequence of betas to step over
|
|
|
@available(iOS 16.2, macOS 13.1, *)
|
|
|
public enum BetaSchedule {
|
|
|
/// Linear stepping between start and end
|
|
|
case linear
|
|
|
/// Steps using linspace(sqrt(start),sqrt(end))^2
|
|
|
case scaledLinear
|
|
|
}
|
|
|
|
|
|
// MARK: - PNDMScheduler
|
|
|
|
|
|
/// A scheduler used to compute a de-noised image
|
|
|
///
|
|
|
/// This implementation matches:
|
|
|
/// [Hugging Face Diffusers PNDMScheduler](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py)
|
|
|
///
|
|
|
/// This scheduler uses the pseudo linear multi-step (PLMS) method only, skipping pseudo Runge-Kutta (PRK) steps
|
|
|
@available(iOS 16.2, macOS 13.1, *)
|
|
|
public final class PNDMScheduler: Scheduler {
|
|
|
public let trainStepCount: Int
|
|
|
public let inferenceStepCount: Int
|
|
|
public let betas: [Float]
|
|
|
public let alphas: [Float]
|
|
|
public let alphasCumProd: [Float]
|
|
|
public let timeSteps: [Int]
|
|
|
|
|
|
// Internal state
|
|
|
var counter: Int
|
|
|
var ets: [MLShapedArray<Float32>]
|
|
|
var currentSample: MLShapedArray<Float32>?
|
|
|
|
|
|
/// Create a scheduler that uses a pseudo linear multi-step (PLMS) method
|
|
|
///
|
|
|
/// - Parameters:
|
|
|
/// - stepCount: Number of inference steps to schedule
|
|
|
/// - trainStepCount: Number of training diffusion steps
|
|
|
/// - betaSchedule: Method to schedule betas from betaStart to betaEnd
|
|
|
/// - betaStart: The starting value of beta for inference
|
|
|
/// - betaEnd: The end value for beta for inference
|
|
|
/// - Returns: A scheduler ready for its first step
|
|
|
public init(
|
|
|
stepCount: Int = 50,
|
|
|
trainStepCount: Int = 1000,
|
|
|
betaSchedule: BetaSchedule = .scaledLinear,
|
|
|
betaStart: Float = 0.00085,
|
|
|
betaEnd: Float = 0.012
|
|
|
) {
|
|
|
self.trainStepCount = trainStepCount
|
|
|
self.inferenceStepCount = stepCount
|
|
|
|
|
|
switch betaSchedule {
|
|
|
case .linear:
|
|
|
self.betas = linspace(betaStart, betaEnd, trainStepCount)
|
|
|
case .scaledLinear:
|
|
|
self.betas = linspace(pow(betaStart, 0.5), pow(betaEnd, 0.5), trainStepCount).map({ $0 * $0 })
|
|
|
}
|
|
|
self.alphas = betas.map({ 1.0 - $0 })
|
|
|
var alphasCumProd = self.alphas
|
|
|
for i in 1..<alphasCumProd.count {
|
|
|
alphasCumProd[i] *= alphasCumProd[i - 1]
|
|
|
}
|
|
|
self.alphasCumProd = alphasCumProd
|
|
|
let stepsOffset = 1 // For stable diffusion
|
|
|
let stepRatio = Float(trainStepCount / stepCount )
|
|
|
let forwardSteps = (0..<stepCount).map {
|
|
|
Int((Float($0) * stepRatio).rounded()) + stepsOffset
|
|
|
}
|
|
|
|
|
|
var timeSteps: [Int] = []
|
|
|
timeSteps.append(contentsOf: forwardSteps.dropLast(1))
|
|
|
timeSteps.append(timeSteps.last!)
|
|
|
timeSteps.append(forwardSteps.last!)
|
|
|
timeSteps.reverse()
|
|
|
|
|
|
self.timeSteps = timeSteps
|
|
|
self.counter = 0
|
|
|
self.ets = []
|
|
|
self.currentSample = nil
|
|
|
}
|
|
|
|
|
|
/// Compute a de-noised image sample and step scheduler state
|
|
|
///
|
|
|
/// - Parameters:
|
|
|
/// - output: The predicted residual noise output of learned diffusion model
|
|
|
/// - timeStep: The current time step in the diffusion chain
|
|
|
/// - sample: The current input sample to the diffusion model
|
|
|
/// - Returns: Predicted de-noised sample at the previous time step
|
|
|
/// - Postcondition: The scheduler state is updated.
|
|
|
/// The state holds the current sample and history of model output noise residuals
|
|
|
public func step(
|
|
|
output: MLShapedArray<Float32>,
|
|
|
timeStep t: Int,
|
|
|
sample s: MLShapedArray<Float32>
|
|
|
) -> MLShapedArray<Float32> {
|
|
|
|
|
|
var timeStep = t
|
|
|
let stepInc = (trainStepCount / inferenceStepCount)
|
|
|
var prevStep = timeStep - stepInc
|
|
|
var modelOutput = output
|
|
|
var sample = s
|
|
|
|
|
|
if counter != 1 {
|
|
|
if ets.count > 3 {
|
|
|
ets = Array(ets[(ets.count - 3)..<ets.count])
|
|
|
}
|
|
|
ets.append(output)
|
|
|
} else {
|
|
|
prevStep = timeStep
|
|
|
timeStep = timeStep + stepInc
|
|
|
}
|
|
|
|
|
|
if ets.count == 1 && counter == 0 {
|
|
|
modelOutput = output
|
|
|
currentSample = sample
|
|
|
} else if ets.count == 1 && counter == 1 {
|
|
|
modelOutput = weightedSum(
|
|
|
[1.0/2.0, 1.0/2.0],
|
|
|
[output, ets[back: 1]]
|
|
|
)
|
|
|
sample = currentSample!
|
|
|
currentSample = nil
|
|
|
} else if ets.count == 2 {
|
|
|
modelOutput = weightedSum(
|
|
|
[3.0/2.0, -1.0/2.0],
|
|
|
[ets[back: 1], ets[back: 2]]
|
|
|
)
|
|
|
} else if ets.count == 3 {
|
|
|
modelOutput = weightedSum(
|
|
|
[23.0/12.0, -16.0/12.0, 5.0/12.0],
|
|
|
[ets[back: 1], ets[back: 2], ets[back: 3]]
|
|
|
)
|
|
|
} else {
|
|
|
modelOutput = weightedSum(
|
|
|
[55.0/24.0, -59.0/24.0, 37/24.0, -9/24.0],
|
|
|
[ets[back: 1], ets[back: 2], ets[back: 3], ets[back: 4]]
|
|
|
)
|
|
|
}
|
|
|
|
|
|
let prevSample = previousSample(sample, timeStep, prevStep, modelOutput)
|
|
|
counter += 1
|
|
|
return prevSample
|
|
|
}
|
|
|
|
|
|
/// Compute sample (denoised image) at previous step given a current time step
|
|
|
///
|
|
|
/// - Parameters:
|
|
|
/// - sample: The current input to the model x_t
|
|
|
/// - timeStep: The current time step t
|
|
|
/// - prevStep: The previous time step t−δ
|
|
|
/// - modelOutput: Predicted noise residual the current time step e_θ(x_t, t)
|
|
|
/// - Returns: Computes previous sample x_(t−δ)
|
|
|
func previousSample(
|
|
|
_ sample: MLShapedArray<Float32>,
|
|
|
_ timeStep: Int,
|
|
|
_ prevStep: Int,
|
|
|
_ modelOutput: MLShapedArray<Float32>
|
|
|
) -> MLShapedArray<Float32> {
|
|
|
|
|
|
// Compute x_(t−δ) using formula (9) from
|
|
|
// "Pseudo Numerical Methods for Diffusion Models on Manifolds",
|
|
|
// Luping Liu, Yi Ren, Zhijie Lin & Zhou Zhao.
|
|
|
// ICLR 2022
|
|
|
//
|
|
|
// Notation:
|
|
|
//
|
|
|
// alphaProdt α_t
|
|
|
// alphaProdtPrev α_(t−δ)
|
|
|
// betaProdt (1 - α_t)
|
|
|
// betaProdtPrev (1 - α_(t−δ))
|
|
|
let alphaProdt = alphasCumProd[timeStep]
|
|
|
let alphaProdtPrev = alphasCumProd[max(0,prevStep)]
|
|
|
let betaProdt = 1 - alphaProdt
|
|
|
let betaProdtPrev = 1 - alphaProdtPrev
|
|
|
|
|
|
// sampleCoeff = (α_(t−δ) - α_t) divided by
|
|
|
// denominator of x_t in formula (9) and plus 1
|
|
|
// Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
|
|
|
// sqrt(α_(t−δ)) / sqrt(α_t))
|
|
|
let sampleCoeff = sqrt(alphaProdtPrev / alphaProdt)
|
|
|
|
|
|
// Denominator of e_θ(x_t, t) in formula (9)
|
|
|
let modelOutputDenomCoeff = alphaProdt * sqrt(betaProdtPrev)
|
|
|
+ sqrt(alphaProdt * betaProdt * alphaProdtPrev)
|
|
|
|
|
|
// full formula (9)
|
|
|
let modelCoeff = -(alphaProdtPrev - alphaProdt)/modelOutputDenomCoeff
|
|
|
let prevSample = weightedSum(
|
|
|
[Double(sampleCoeff), Double(modelCoeff)],
|
|
|
[sample, modelOutput]
|
|
|
)
|
|
|
|
|
|
return prevSample
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/// Evenly spaced floats between specified interval
|
|
|
///
|
|
|
/// - Parameters:
|
|
|
/// - start: Start of the interval
|
|
|
/// - end: End of the interval
|
|
|
/// - count: The number of floats to return between [*start*, *end*]
|
|
|
/// - Returns: Float array with *count* elements evenly spaced between at *start* and *end*
|
|
|
func linspace(_ start: Float, _ end: Float, _ count: Int) -> [Float] {
|
|
|
let scale = (end - start) / Float(count - 1)
|
|
|
return (0..<count).map { Float($0)*scale + start }
|
|
|
}
|
|
|
|
|
|
extension Collection {
|
|
|
/// Collection element index from the back. *self[back: 1]* yields the last element
|
|
|
public subscript(back i: Int) -> Element {
|
|
|
return self[index(endIndex, offsetBy: -i)]
|
|
|
}
|
|
|
}
|