You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

318 lines
11 KiB

// For licensing see accompanying LICENSE.md file.
// Copyright (C) 2022 Apple Inc. All Rights Reserved.
import CoreML
@available(iOS 16.2, macOS 13.1, *)
public protocol Scheduler {
/// Number of diffusion steps performed during training
var trainStepCount: Int { get }
/// Number of inference steps to be performed
var inferenceStepCount: Int { get }
/// Training diffusion time steps index by inference time step
var timeSteps: [Int] { get }
/// Training diffusion time steps index by inference time step
func calculateTimesteps(strength: Float?) -> [Int]
/// Schedule of betas which controls the amount of noise added at each timestep
var betas: [Float] { get }
/// 1 - betas
var alphas: [Float] { get }
/// Cached cumulative product of alphas
var alphasCumProd: [Float] { get }
/// Standard deviation of the initial noise distribution
var initNoiseSigma: Float { get }
/// Compute a de-noised image sample and step scheduler state
///
/// - Parameters:
/// - output: The predicted residual noise output of learned diffusion model
/// - timeStep: The current time step in the diffusion chain
/// - sample: The current input sample to the diffusion model
/// - Returns: Predicted de-noised sample at the previous time step
/// - Postcondition: The scheduler state is updated.
/// The state holds the current sample and history of model output noise residuals
func step(
output: MLShapedArray<Float32>,
timeStep t: Int,
sample s: MLShapedArray<Float32>
) -> MLShapedArray<Float32>
}
@available(iOS 16.2, macOS 13.1, *)
public extension Scheduler {
var initNoiseSigma: Float { 1 }
}
@available(iOS 16.2, macOS 13.1, *)
public extension Scheduler {
/// Compute weighted sum of shaped arrays of equal shapes
///
/// - Parameters:
/// - weights: The weights each array is multiplied by
/// - values: The arrays to be weighted and summed
/// - Returns: sum_i weights[i]*values[i]
func weightedSum(_ weights: [Double], _ values: [MLShapedArray<Float32>]) -> MLShapedArray<Float32> {
assert(weights.count > 1 && values.count == weights.count)
assert(values.allSatisfy({ $0.scalarCount == values.first!.scalarCount }))
var w = Float(weights.first!)
var scalars = values.first!.scalars.map({ $0 * w })
for next in 1 ..< values.count {
w = Float(weights[next])
let nextScalars = values[next].scalars
for i in 0 ..< scalars.count {
scalars[i] += w * nextScalars[i]
}
}
return MLShapedArray(scalars: scalars, shape: values.first!.shape)
}
}
// MARK: - Image2Image
@available(iOS 16.2, macOS 13.1, *)
public extension Scheduler {
func calculateAlphasCumprod(strength: Float) -> AlphasCumprodCalculation {
AlphasCumprodCalculation(
alphasCumprod: alphasCumProd,
timesteps: trainStepCount,
steps: inferenceStepCount,
strength: strength)
}
}
// MARK: - Timesteps
@available(iOS 16.2, macOS 13.1, *)
public extension Scheduler {
func calculateTimesteps(strength: Float?) -> [Int] {
guard let strength else { return timeSteps }
let startStep = max(inferenceStepCount - Int(Float(inferenceStepCount) * strength), 0)
let actualTimesteps = Array(timeSteps[startStep...])
return actualTimesteps
}
}
// MARK: - BetaSchedule
/// How to map a beta range to a sequence of betas to step over
@available(iOS 16.2, macOS 13.1, *)
public enum BetaSchedule {
/// Linear stepping between start and end
case linear
/// Steps using linspace(sqrt(start),sqrt(end))^2
case scaledLinear
}
// MARK: - PNDMScheduler
/// A scheduler used to compute a de-noised image
///
/// This implementation matches:
/// [Hugging Face Diffusers PNDMScheduler](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py)
///
/// This scheduler uses the pseudo linear multi-step (PLMS) method only, skipping pseudo Runge-Kutta (PRK) steps
@available(iOS 16.2, macOS 13.1, *)
public final class PNDMScheduler: Scheduler {
public let trainStepCount: Int
public let inferenceStepCount: Int
public let betas: [Float]
public let alphas: [Float]
public let alphasCumProd: [Float]
public let timeSteps: [Int]
// Internal state
var counter: Int
var ets: [MLShapedArray<Float32>]
var currentSample: MLShapedArray<Float32>?
/// Create a scheduler that uses a pseudo linear multi-step (PLMS) method
///
/// - Parameters:
/// - stepCount: Number of inference steps to schedule
/// - trainStepCount: Number of training diffusion steps
/// - betaSchedule: Method to schedule betas from betaStart to betaEnd
/// - betaStart: The starting value of beta for inference
/// - betaEnd: The end value for beta for inference
/// - Returns: A scheduler ready for its first step
public init(
stepCount: Int = 50,
trainStepCount: Int = 1000,
betaSchedule: BetaSchedule = .scaledLinear,
betaStart: Float = 0.00085,
betaEnd: Float = 0.012
) {
self.trainStepCount = trainStepCount
self.inferenceStepCount = stepCount
switch betaSchedule {
case .linear:
self.betas = linspace(betaStart, betaEnd, trainStepCount)
case .scaledLinear:
self.betas = linspace(pow(betaStart, 0.5), pow(betaEnd, 0.5), trainStepCount).map({ $0 * $0 })
}
self.alphas = betas.map({ 1.0 - $0 })
var alphasCumProd = self.alphas
for i in 1..<alphasCumProd.count {
alphasCumProd[i] *= alphasCumProd[i - 1]
}
self.alphasCumProd = alphasCumProd
let stepsOffset = 1 // For stable diffusion
let stepRatio = Float(trainStepCount / stepCount )
let forwardSteps = (0..<stepCount).map {
Int((Float($0) * stepRatio).rounded()) + stepsOffset
}
var timeSteps: [Int] = []
timeSteps.append(contentsOf: forwardSteps.dropLast(1))
timeSteps.append(timeSteps.last!)
timeSteps.append(forwardSteps.last!)
timeSteps.reverse()
self.timeSteps = timeSteps
self.counter = 0
self.ets = []
self.currentSample = nil
}
/// Compute a de-noised image sample and step scheduler state
///
/// - Parameters:
/// - output: The predicted residual noise output of learned diffusion model
/// - timeStep: The current time step in the diffusion chain
/// - sample: The current input sample to the diffusion model
/// - Returns: Predicted de-noised sample at the previous time step
/// - Postcondition: The scheduler state is updated.
/// The state holds the current sample and history of model output noise residuals
public func step(
output: MLShapedArray<Float32>,
timeStep t: Int,
sample s: MLShapedArray<Float32>
) -> MLShapedArray<Float32> {
var timeStep = t
let stepInc = (trainStepCount / inferenceStepCount)
var prevStep = timeStep - stepInc
var modelOutput = output
var sample = s
if counter != 1 {
if ets.count > 3 {
ets = Array(ets[(ets.count - 3)..<ets.count])
}
ets.append(output)
} else {
prevStep = timeStep
timeStep = timeStep + stepInc
}
if ets.count == 1 && counter == 0 {
modelOutput = output
currentSample = sample
} else if ets.count == 1 && counter == 1 {
modelOutput = weightedSum(
[1.0/2.0, 1.0/2.0],
[output, ets[back: 1]]
)
sample = currentSample!
currentSample = nil
} else if ets.count == 2 {
modelOutput = weightedSum(
[3.0/2.0, -1.0/2.0],
[ets[back: 1], ets[back: 2]]
)
} else if ets.count == 3 {
modelOutput = weightedSum(
[23.0/12.0, -16.0/12.0, 5.0/12.0],
[ets[back: 1], ets[back: 2], ets[back: 3]]
)
} else {
modelOutput = weightedSum(
[55.0/24.0, -59.0/24.0, 37/24.0, -9/24.0],
[ets[back: 1], ets[back: 2], ets[back: 3], ets[back: 4]]
)
}
let prevSample = previousSample(sample, timeStep, prevStep, modelOutput)
counter += 1
return prevSample
}
/// Compute sample (denoised image) at previous step given a current time step
///
/// - Parameters:
/// - sample: The current input to the model x_t
/// - timeStep: The current time step t
/// - prevStep: The previous time step tδ
/// - modelOutput: Predicted noise residual the current time step e_θ(x_t, t)
/// - Returns: Computes previous sample x_(tδ)
func previousSample(
_ sample: MLShapedArray<Float32>,
_ timeStep: Int,
_ prevStep: Int,
_ modelOutput: MLShapedArray<Float32>
) -> MLShapedArray<Float32> {
// Compute x_(tδ) using formula (9) from
// "Pseudo Numerical Methods for Diffusion Models on Manifolds",
// Luping Liu, Yi Ren, Zhijie Lin & Zhou Zhao.
// ICLR 2022
//
// Notation:
//
// alphaProdt α_t
// alphaProdtPrev α_(tδ)
// betaProdt (1 - α_t)
// betaProdtPrev (1 - α_(tδ))
let alphaProdt = alphasCumProd[timeStep]
let alphaProdtPrev = alphasCumProd[max(0,prevStep)]
let betaProdt = 1 - alphaProdt
let betaProdtPrev = 1 - alphaProdtPrev
// sampleCoeff = (α_(tδ) - α_t) divided by
// denominator of x_t in formula (9) and plus 1
// Note: (α_(tδ) - α_t) / (sqrt(α_t) * (sqrt(α_(tδ)) + sqr(α_t))) =
// sqrt(α_(tδ)) / sqrt(α_t))
let sampleCoeff = sqrt(alphaProdtPrev / alphaProdt)
// Denominator of e_θ(x_t, t) in formula (9)
let modelOutputDenomCoeff = alphaProdt * sqrt(betaProdtPrev)
+ sqrt(alphaProdt * betaProdt * alphaProdtPrev)
// full formula (9)
let modelCoeff = -(alphaProdtPrev - alphaProdt)/modelOutputDenomCoeff
let prevSample = weightedSum(
[Double(sampleCoeff), Double(modelCoeff)],
[sample, modelOutput]
)
return prevSample
}
}
/// Evenly spaced floats between specified interval
///
/// - Parameters:
/// - start: Start of the interval
/// - end: End of the interval
/// - count: The number of floats to return between [*start*, *end*]
/// - Returns: Float array with *count* elements evenly spaced between at *start* and *end*
func linspace(_ start: Float, _ end: Float, _ count: Int) -> [Float] {
let scale = (end - start) / Float(count - 1)
return (0..<count).map { Float($0)*scale + start }
}
extension Collection {
/// Collection element index from the back. *self[back: 1]* yields the last element
public subscript(back i: Int) -> Element {
return self[index(endIndex, offsetBy: -i)]
}
}