* Add brief instructions to download weights from the Hub.
This should be convenient and time-saving for many users.
* Capitalize ORIGINAL.
* Expand git lfs details.
* Make download code robust to symlinks.
coremltools seems to not like symlinks.
* Add mention to demo app.
* Add steps to git lfs process.
* Minor text change.
* Apply suggestions from review.
## <aname="using-converted-weights"></a> Using Ready-made Core ML Models from Hugging Face Hub
<details>
<summary> Click to expand </summary>
🤗 Hugging Face ran the [conversion procedure](#converting-models-to-coreml) on the following models and made the Core ML weights publicly available on the Hub. If you would like to convert a version of Stable Diffusion that is not already available on the Hub, please refer to the [Converting Models to Core ML](#converting-models-to-core-ml).
If you want to use any of those models you may download the weights and proceed to [generate images with Python](#image-generation-with-python) or [Swift](#image-generation-with-swift).
There are several variants in each model repository. You may clone the whole repos using `git` and `git lfs` to download all variants, or selectively download the ones you need.
To clone the repos using `git`, please follow this process:
**Step 1:** Install the `git lfs` extension for your system.
`git lfs` stores large files outside the main git repo, and it downloads them from the appropriate server after you clone or checkout. It is available in most package managers, check [the installation page](https://git-lfs.com) for details.
**Step 2:** Enable `git lfs` by running this command once:
```bash
git lfs install
```
**Step 3:** Use `git clone` to download a copy of the repo that includes all model variants. For Stable Diffusion version 1.4, you'd issue the following command in your terminal:
If you prefer to download specific variants instead of cloning the repos, you can use the `huggingface_hub` Python library. For example, to do generation in Python using the `ORIGINAL` attention implementation (read [this section](#converting-models-to-core-ml) for details), you could use the following helper code:
```Python
from huggingface_hub import snapshot_download
from huggingface_hub.file_download import repo_folder_name
`model_path` would be the path in your local filesystem where the checkpoint was saved. Please, refer to [this post](https://huggingface.co/blog/diffusers-coreml) for additional details.
</details>
## <aname="converting-models-to-coreml"></a> Converting Models to Core ML
## <aname="converting-models-to-coreml"></a> Converting Models to Core ML
<details>
<details>
@ -161,6 +228,15 @@ Note that the chunked version of Unet is checked for first. Only if it is not pr
</details>
</details>
## <aname="swift-app"></a> Example Swift App
<details>
<summary> Click to expand </summary>
🤗 Hugging Face created an [open-source demo app](https://github.com/huggingface/swift-coreml-diffusers) on top of this library. It's written in native Swift and Swift UI, and runs on macOS, iOS and iPadOS. You can use the code as a starting point for your app, or to see how to integrate this library in your own projects.