|
|
@ -10,6 +10,7 @@ from collections import OrderedDict, defaultdict
|
|
|
|
from copy import deepcopy
|
|
|
|
from copy import deepcopy
|
|
|
|
import coremltools as ct
|
|
|
|
import coremltools as ct
|
|
|
|
from diffusers import StableDiffusionPipeline
|
|
|
|
from diffusers import StableDiffusionPipeline
|
|
|
|
|
|
|
|
from diffusers.models.vae import DiagonalGaussianDistribution
|
|
|
|
import gc
|
|
|
|
import gc
|
|
|
|
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import logging
|
|
|
@ -29,11 +30,22 @@ import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#from coremltools.converters.mil.frontend.torch.torch_op_registry import register_torch_op
|
|
|
|
|
|
|
|
#from coremltools.converters.mil.frontend.torch.ops import _get_inputs
|
|
|
|
|
|
|
|
#from coremltools.converters.mil import Builder as mb
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
#@register_torch_op
|
|
|
|
|
|
|
|
#def randn(context, node):
|
|
|
|
|
|
|
|
# inputs = _get_inputs(context, node, expected=5)
|
|
|
|
|
|
|
|
# shape = inputs[0]
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# x = mb.random_normal(shape=shape, mean=0., stddev=1.)
|
|
|
|
|
|
|
|
# context.add(x, node.name)
|
|
|
|
|
|
|
|
|
|
|
|
torch.set_grad_enabled(False)
|
|
|
|
torch.set_grad_enabled(False)
|
|
|
|
|
|
|
|
|
|
|
|
from types import MethodType
|
|
|
|
from types import MethodType
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _get_coreml_inputs(sample_inputs, args):
|
|
|
|
def _get_coreml_inputs(sample_inputs, args):
|
|
|
|
return [
|
|
|
|
return [
|
|
|
|
ct.TensorType(
|
|
|
|
ct.TensorType(
|
|
|
@ -534,6 +546,7 @@ def convert_vae_encoder(pipe, args):
|
|
|
|
h = self.encoder(sample)
|
|
|
|
h = self.encoder(sample)
|
|
|
|
moments = self.quant_conv(h)
|
|
|
|
moments = self.quant_conv(h)
|
|
|
|
diagonalNoise = diagonalNoise.to(sample.device)
|
|
|
|
diagonalNoise = diagonalNoise.to(sample.device)
|
|
|
|
|
|
|
|
# posterior = DiagonalGaussianDistribution(moments)
|
|
|
|
posterior = CoreMLDiagonalGaussianDistribution(moments, diagonalNoise)
|
|
|
|
posterior = CoreMLDiagonalGaussianDistribution(moments, diagonalNoise)
|
|
|
|
posteriorSample = posterior.sample()
|
|
|
|
posteriorSample = posterior.sample()
|
|
|
|
|
|
|
|
|
|
|
|