diagonal test with randn

pull/115/head
Timothy Kautz 2 years ago
parent bf087ca116
commit 270afe1bb9

@ -10,6 +10,7 @@ from collections import OrderedDict, defaultdict
from copy import deepcopy from copy import deepcopy
import coremltools as ct import coremltools as ct
from diffusers import StableDiffusionPipeline from diffusers import StableDiffusionPipeline
from diffusers.models.vae import DiagonalGaussianDistribution
import gc import gc
import logging import logging
@ -29,11 +30,22 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
#from coremltools.converters.mil.frontend.torch.torch_op_registry import register_torch_op
#from coremltools.converters.mil.frontend.torch.ops import _get_inputs
#from coremltools.converters.mil import Builder as mb
#
#@register_torch_op
#def randn(context, node):
# inputs = _get_inputs(context, node, expected=5)
# shape = inputs[0]
#
# x = mb.random_normal(shape=shape, mean=0., stddev=1.)
# context.add(x, node.name)
torch.set_grad_enabled(False) torch.set_grad_enabled(False)
from types import MethodType from types import MethodType
def _get_coreml_inputs(sample_inputs, args): def _get_coreml_inputs(sample_inputs, args):
return [ return [
ct.TensorType( ct.TensorType(
@ -534,6 +546,7 @@ def convert_vae_encoder(pipe, args):
h = self.encoder(sample) h = self.encoder(sample)
moments = self.quant_conv(h) moments = self.quant_conv(h)
diagonalNoise = diagonalNoise.to(sample.device) diagonalNoise = diagonalNoise.to(sample.device)
# posterior = DiagonalGaussianDistribution(moments)
posterior = CoreMLDiagonalGaussianDistribution(moments, diagonalNoise) posterior = CoreMLDiagonalGaussianDistribution(moments, diagonalNoise)
posteriorSample = posterior.sample() posteriorSample = posterior.sample()

Loading…
Cancel
Save