diagonal test with randn

pull/115/head
Timothy Kautz 2 years ago
parent bf087ca116
commit 270afe1bb9

@ -10,6 +10,7 @@ from collections import OrderedDict, defaultdict
from copy import deepcopy
import coremltools as ct
from diffusers import StableDiffusionPipeline
from diffusers.models.vae import DiagonalGaussianDistribution
import gc
import logging
@ -29,11 +30,22 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
#from coremltools.converters.mil.frontend.torch.torch_op_registry import register_torch_op
#from coremltools.converters.mil.frontend.torch.ops import _get_inputs
#from coremltools.converters.mil import Builder as mb
#
#@register_torch_op
#def randn(context, node):
# inputs = _get_inputs(context, node, expected=5)
# shape = inputs[0]
#
# x = mb.random_normal(shape=shape, mean=0., stddev=1.)
# context.add(x, node.name)
torch.set_grad_enabled(False)
from types import MethodType
def _get_coreml_inputs(sample_inputs, args):
return [
ct.TensorType(
@ -534,6 +546,7 @@ def convert_vae_encoder(pipe, args):
h = self.encoder(sample)
moments = self.quant_conv(h)
diagonalNoise = diagonalNoise.to(sample.device)
# posterior = DiagonalGaussianDistribution(moments)
posterior = CoreMLDiagonalGaussianDistribution(moments, diagonalNoise)
posteriorSample = posterior.sample()

Loading…
Cancel
Save