commit
fb558f78d9
@ -0,0 +1,10 @@
|
||||
build/
|
||||
build-debug/
|
||||
build-*/
|
||||
|
||||
compile_commands.json
|
||||
|
||||
.exrc
|
||||
.cache
|
||||
|
||||
src/arm_neon.h
|
@ -0,0 +1,71 @@
|
||||
cmake_minimum_required (VERSION 3.0)
|
||||
project(ggml VERSION 0.1.0)
|
||||
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS "on")
|
||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
|
||||
set(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib")
|
||||
|
||||
if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
|
||||
set(GGML_STANDALONE ON)
|
||||
include(cmake/GitVars.cmake)
|
||||
include(cmake/BuildTypes.cmake)
|
||||
else()
|
||||
set(GGML_STANDALONE OFF)
|
||||
endif()
|
||||
|
||||
# options
|
||||
|
||||
option(GGML_ALL_WARNINGS "ggml: enable all compiler warnings" ON)
|
||||
option(GGML_ALL_WARNINGS_3RD_PARTY "ggml: enable all compiler warnings in 3rd party libs" OFF)
|
||||
|
||||
option(GGML_SANITIZE_THREAD "ggml: enable thread sanitizer" OFF)
|
||||
option(GGML_SANITIZE_ADDRESS "ggml: enable address sanitizer" OFF)
|
||||
option(GGML_SANITIZE_UNDEFINED "ggml: enable undefined sanitizer" OFF)
|
||||
|
||||
option(GGML_BUILD_TESTS "ggml: build tests" ${GGML_STANDALONE})
|
||||
option(GGML_BUILD_EXAMPLES "ggml: build examples" ${GGML_STANDALONE})
|
||||
|
||||
# sanitizers
|
||||
|
||||
if (GGML_SANITIZE_THREAD)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=thread")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=thread")
|
||||
endif()
|
||||
|
||||
if (GGML_SANITIZE_ADDRESS)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=address -fno-omit-frame-pointer")
|
||||
endif()
|
||||
|
||||
if (GGML_SANITIZE_UNDEFINED)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fsanitize=undefined")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=undefined")
|
||||
endif()
|
||||
|
||||
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -ffast-math")
|
||||
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -march=native")
|
||||
|
||||
# dependencies
|
||||
|
||||
set(CMAKE_C_STANDARD 11)
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
# main
|
||||
|
||||
if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
|
||||
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
|
||||
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "RelWithDebInfo")
|
||||
endif ()
|
||||
|
||||
add_subdirectory(src)
|
||||
|
||||
if (GGML_BUILD_TESTS)
|
||||
enable_testing()
|
||||
add_subdirectory(tests)
|
||||
endif ()
|
||||
|
||||
if (GGML_BUILD_EXAMPLES)
|
||||
add_subdirectory(examples)
|
||||
endif ()
|
@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2022 Georgi Gerganov
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
@ -0,0 +1,51 @@
|
||||
# ggml
|
||||
|
||||
Tensor library in C for machine learning
|
||||
|
||||
## Features
|
||||
|
||||
- Automatic differentiation (WIP)
|
||||
- 16-bit float support
|
||||
- ADAM and L-BFGS optimizers
|
||||
- Optimized for Arm64 architectures (i.e. MacBook M1) via NEON intrinsics
|
||||
- On x86 architectures utilzes AVX intrinsics
|
||||
- No third-party dependencies
|
||||
- Zero memory allocations during runtime
|
||||
|
||||
## Local GPT inference
|
||||
|
||||
Using ggml you can run [GPT-2](examples/gpt-2) and [GPT-J](examples/gpt-j) inference locally on your computer without any additional software or hardware. You don't even need to install python or any other third-party library.
|
||||
|
||||
The example programs are implemented in C++. They run entirely on the CPU.
|
||||
|
||||
Here is how to use them:
|
||||
|
||||
```bash
|
||||
# Build ggml + examples
|
||||
git clone https://github.com/ggerganov/ggml
|
||||
cd ggml
|
||||
mkdir build && cd build
|
||||
cmake ..
|
||||
make -j4 gpt-2 gpt-j
|
||||
|
||||
# Run the GPT-2 small 117M model
|
||||
../examples/gpt-2/download-ggml-model.sh 117M
|
||||
./bin/gpt-2 -m models/gpt-2-117M/ggml-model.bin -p "This is an example"
|
||||
|
||||
# Run the GPT-J 6B model (requires 12GB disk space and 16GB CPU RAM)
|
||||
../examples/gpt-j/download-ggml-model.sh 6B
|
||||
./bin/gpt-j -m models/gpt-j-6B/ggml-model.bin -p "This is an example"
|
||||
```
|
||||
|
||||
This is the inference speed for the different models on my MacBook M1 Pro:
|
||||
|
||||
| Model | Size | Time / Token |
|
||||
| --- | --- | --- |
|
||||
| GPT-2 | 117M | 5 ms |
|
||||
| GPT-2 | 345M | 12 ms |
|
||||
| GPT-2 | 774M | 23 ms |
|
||||
| GPT-2 | 1558M | 42 ms |
|
||||
| --- | --- | --- |
|
||||
| GPT-J | 6B | 125 ms |
|
||||
|
||||
For more information, checkout the corresponding programs in the [examples](examples) folder.
|
@ -0,0 +1,54 @@
|
||||
# Add new build types
|
||||
|
||||
# ReleaseGG - Release with enabled asserts
|
||||
|
||||
SET(CMAKE_CXX_FLAGS_RELEASEGG
|
||||
"-O3"
|
||||
CACHE STRING "Flags used by the c++ compiler during release builds with enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_C_FLAGS_RELEASEGG
|
||||
"-O3"
|
||||
CACHE STRING "Flags used by the compiler during release builds with enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_EXE_LINKER_FLAGS_RELEASEGG
|
||||
""
|
||||
CACHE STRING "Flags used for linking binaries during release builds with enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_SHARED_LINKER_FLAGS_RELEASEGG
|
||||
""
|
||||
CACHE STRING "Flags used by the shared libraries linker during release builds with enabled asserts."
|
||||
FORCE )
|
||||
MARK_AS_ADVANCED(
|
||||
CMAKE_CXX_FLAGS_RELEASEGG
|
||||
CMAKE_C_FLAGS_RELEASEGG
|
||||
CMAKE_EXE_LINKER_FLAGS_RELEASEGG
|
||||
CMAKE_SHARED_LINKER_FLAGS_RELEASEGG )
|
||||
|
||||
# RelWithDebInfoGG - RelWithDebInfo with enabled asserts
|
||||
|
||||
SET(CMAKE_CXX_FLAGS_RELWITHDEBINFOGG
|
||||
"-O2 -g"
|
||||
CACHE STRING "Flags used by the c++ compiler during release builds with debug symbols and enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_C_FLAGS_RELWITHDEBINFOGG
|
||||
"-O2 -g"
|
||||
CACHE STRING "Flags used by the compiler during release builds with debug symbols and enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFOGG
|
||||
""
|
||||
CACHE STRING "Flags used for linking binaries during release builds with debug symbols and enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFOGG
|
||||
""
|
||||
CACHE STRING "Flags used by the shared libraries linker during release builds with debug symbols and enabled asserts."
|
||||
FORCE )
|
||||
MARK_AS_ADVANCED(
|
||||
CMAKE_CXX_FLAGS_RELWITHDEBINFOGG
|
||||
CMAKE_C_FLAGS_RELWITHDEBINFOGG
|
||||
CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFOGG
|
||||
CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFOGG )
|
||||
|
||||
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
|
||||
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
|
||||
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo" "ReleaseGG" "RelWithDebInfoGG")
|
||||
endif()
|
@ -0,0 +1,22 @@
|
||||
find_package(Git)
|
||||
|
||||
# the commit's SHA1
|
||||
execute_process(COMMAND
|
||||
"${GIT_EXECUTABLE}" describe --match=NeVeRmAtCh --always --abbrev=8
|
||||
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
|
||||
OUTPUT_VARIABLE GIT_SHA1
|
||||
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
|
||||
|
||||
# the date of the commit
|
||||
execute_process(COMMAND
|
||||
"${GIT_EXECUTABLE}" log -1 --format=%ad --date=local
|
||||
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
|
||||
OUTPUT_VARIABLE GIT_DATE
|
||||
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
|
||||
|
||||
# the subject of the commit
|
||||
execute_process(COMMAND
|
||||
"${GIT_EXECUTABLE}" log -1 --format=%s
|
||||
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
|
||||
OUTPUT_VARIABLE GIT_COMMIT_SUBJECT
|
||||
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
|
@ -0,0 +1,5 @@
|
||||
add_library(ggml_utils STATIC utils.cpp)
|
||||
target_include_directories(ggml_utils PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
add_subdirectory(gpt-2)
|
||||
add_subdirectory(gpt-j)
|
@ -0,0 +1,6 @@
|
||||
#
|
||||
# gpt-2
|
||||
|
||||
set(TEST_TARGET gpt-2)
|
||||
add_executable(${TEST_TARGET} main.cpp)
|
||||
target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)
|
@ -0,0 +1,126 @@
|
||||
# gpt-2
|
||||
|
||||
This is a C++ example running GPT-2 inference using the [ggml](https://github.com/ggerganov/ggml) library.
|
||||
The enitre code of the example is in [main.cpp](main.cpp).
|
||||
|
||||
The program runs on the CPU - no video card is required.
|
||||
|
||||
The example supports the following models:
|
||||
|
||||
| Model | Description | Disk Size |
|
||||
| --- | --- | --- |
|
||||
| 117M | Small model | 240 MB |
|
||||
| 345M | Medium model | 680 MB |
|
||||
| 774M | Large model | 1.5 GB |
|
||||
| 1558M | XL model | 3.0 GB |
|
||||
|
||||
Sample performance on MacBook M1 Pro:
|
||||
|
||||
| Model | Size | Time / Token |
|
||||
| --- | --- | --- |
|
||||
| GPT-2 | 117M | 5 ms |
|
||||
| GPT-2 | 345M | 12 ms |
|
||||
| GPT-2 | 774M | 23 ms |
|
||||
| GPT-2 | 1558M | 42 ms |
|
||||
|
||||
Sample output:
|
||||
|
||||
```
|
||||
$ ./bin/gpt-2 -h
|
||||
usage: ./bin/gpt-2 [options]
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
-s SEED, --seed SEED RNG seed (default: -1)
|
||||
-t N, --threads N number of threads to use during computation (default: 8)
|
||||
-p PROMPT, --prompt PROMPT
|
||||
prompt to start generation with (default: random)
|
||||
-n N, --n_predict N number of tokens to predict (default: 200)
|
||||
--top_k N top-k sampling (default: 40)
|
||||
--top_p N top-p sampling (default: 0.9)
|
||||
--temp N temperature (default: 1.0)
|
||||
-b N, --batch_size N batch size for prompt processing (default: 8)
|
||||
-m FNAME, --model FNAME
|
||||
model path (default: models/gpt-2-117M/ggml-model.bin)
|
||||
|
||||
$ ./bin/gpt-2
|
||||
gpt2_model_load: loading model from 'models/gpt-2-117M/ggml-model.bin'
|
||||
gpt2_model_load: n_vocab = 50257
|
||||
gpt2_model_load: n_ctx = 1024
|
||||
gpt2_model_load: n_embd = 768
|
||||
gpt2_model_load: n_head = 12
|
||||
gpt2_model_load: n_layer = 12
|
||||
gpt2_model_load: f16 = 1
|
||||
gpt2_model_load: ggml ctx size = 311.12 MB
|
||||
gpt2_model_load: memory size = 72.00 MB, n_mem = 12288
|
||||
gpt2_model_load: model size = 239.08 MB
|
||||
main: number of tokens in prompt = 1
|
||||
|
||||
So this is going to be the end of the line for us.
|
||||
|
||||
If the Dolphins continue to do their business, it's possible that the team could make a bid to bring in new defensive coordinator Scott Linehan.
|
||||
|
||||
Linehan's job is a little daunting, but he's a great coach and an excellent coach. I don't believe we're going to make the playoffs.
|
||||
|
||||
We're going to have to work hard to keep our heads down and get ready to go.<|endoftext|>
|
||||
|
||||
main: mem per token = 2048612 bytes
|
||||
main: load time = 106.32 ms
|
||||
main: sample time = 7.10 ms
|
||||
main: predict time = 506.40 ms / 5.06 ms per token
|
||||
main: total time = 629.84 ms
|
||||
```
|
||||
|
||||
## Downloading and converting the original models
|
||||
|
||||
You can download the original model files using the [download-model.sh](download-model.sh) Bash script.
|
||||
The model is in Tensorflow format, so before using it with ggml, we need to convert it to appropriate format.
|
||||
This is done via the [convert-ckpt-to-ggml.py](convert-ckpt-to-ggml.py) python script.
|
||||
|
||||
Here is the entire process for the GPT-2 117M model:
|
||||
|
||||
```
|
||||
cd ggml/build
|
||||
../examples/gpt-2/download-model.sh 117M
|
||||
|
||||
Downloading model 117M ...
|
||||
models/gpt-2-117M/checkpoint 100%[=============================>] 77 --.-KB/s in 0s
|
||||
models/gpt-2-117M/encoder.json 100%[=============================>] 1018K 1.20MB/s in 0.8s
|
||||
models/gpt-2-117M/hparams.json 100%[=============================>] 90 --.-KB/s in 0s
|
||||
models/gpt-2-117M/model.ckpt.data-00000-of-00001 100%[=============================>] 474.70M 1.21MB/s in 8m 39s
|
||||
models/gpt-2-117M/model.ckpt.index 100%[=============================>] 5.09K --.-KB/s in 0s
|
||||
models/gpt-2-117M/model.ckpt.meta 100%[=============================>] 460.11K 806KB/s in 0.6s
|
||||
models/gpt-2-117M/vocab.bpe 100%[=============================>] 445.62K 799KB/s in 0.6s
|
||||
Done! Model '117M' saved in 'models/gpt-2-117M/'
|
||||
|
||||
Run the convert-ckpt-to-ggml.py script to convert the model to ggml format.
|
||||
|
||||
python /Users/john/ggml/examples/gpt-2/convert-ckpt-to-ggml.py models/gpt-2-117M/
|
||||
|
||||
```
|
||||
|
||||
This conversion requires that you have python and Tensorflow installed on your computer.
|
||||
Still, if you want to avoid this, you can download the already converted ggml models as
|
||||
described below.
|
||||
|
||||
## Downloading the ggml model directly
|
||||
|
||||
For convenience, I will be hosting the converted ggml model files in order to make it easier to run the examples.
|
||||
This way, you can directly download a single binary file and start using it. No python or Tensorflow is required.
|
||||
|
||||
Here is how to get the 117M ggml model:
|
||||
|
||||
```
|
||||
cd ggml/build
|
||||
../examples/gpt-2/download-ggml-model.sh 117M
|
||||
|
||||
Downloading ggml model 117M ...
|
||||
models/gpt-2-117M/ggml-model.bin 100%[===============================>] 239.58M 8.52MB/s in 28s
|
||||
Done! Model '117M' saved in 'models/gpt-2-117M/ggml-model.bin'
|
||||
You can now use it like this:
|
||||
|
||||
$ ./bin/gpt-2 -m models/gpt-2-117M/ggml-model.bin -p "This is an example"
|
||||
|
||||
```
|
||||
|
||||
At some point, I might stop hosting these models. So in that case, simply revert to the manual process above.
|
@ -0,0 +1,127 @@
|
||||
# Convert a model checkpoint to a ggml compatible file
|
||||
#
|
||||
# Load the model using TensorFlow.
|
||||
# Iterate over all variables and write them to a binary file.
|
||||
#
|
||||
# For each variable, write the following:
|
||||
# - Number of dimensions (int)
|
||||
# - Name length (int)
|
||||
# - Dimensions (int[n_dims])
|
||||
# - Name (char[name_length])
|
||||
# - Data (float[n_dims])
|
||||
#
|
||||
# By default, the bigger matrices are converted to 16-bit floats.
|
||||
# This can be disabled by adding the "use-f32" CLI argument.
|
||||
#
|
||||
# At the start of the ggml file we write the model parameters
|
||||
# and vocabulary.
|
||||
#
|
||||
|
||||
import sys
|
||||
import json
|
||||
import struct
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8+n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
if len(sys.argv) < 2:
|
||||
print("Usage: convert-ckpt-to-ggml.py dir-model [use-f32]\n")
|
||||
sys.exit(1)
|
||||
|
||||
# output in the same directory as the model
|
||||
dir_model = sys.argv[1]
|
||||
fname_out = sys.argv[1] + "/ggml-model.bin"
|
||||
|
||||
with open(dir_model + "/encoder.json", "r") as f:
|
||||
encoder = json.load(f)
|
||||
|
||||
with open(dir_model + "/hparams.json", "r") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
# use 16-bit or 32-bit floats
|
||||
use_f16 = True
|
||||
if len(sys.argv) > 2:
|
||||
use_f16 = False
|
||||
fname_out = sys.argv[1] + "/ggml-model-f32.bin"
|
||||
|
||||
list_vars = tf.train.list_variables(dir_model)
|
||||
|
||||
fout = open(fname_out, "wb")
|
||||
|
||||
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
||||
fout.write(struct.pack("i", hparams["n_vocab"]))
|
||||
fout.write(struct.pack("i", hparams["n_ctx"]))
|
||||
fout.write(struct.pack("i", hparams["n_embd"]))
|
||||
fout.write(struct.pack("i", hparams["n_head"]))
|
||||
fout.write(struct.pack("i", hparams["n_layer"]))
|
||||
fout.write(struct.pack("i", use_f16))
|
||||
|
||||
byte_encoder = bytes_to_unicode()
|
||||
byte_decoder = {v:k for k, v in byte_encoder.items()}
|
||||
|
||||
fout.write(struct.pack("i", len(encoder)))
|
||||
for key in encoder:
|
||||
text = bytearray([byte_decoder[c] for c in key]).decode('utf-8', errors='replace').encode('utf-8')
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
|
||||
for name, shape in list_vars:
|
||||
print("Processing variable: " + name + " with shape: ", shape)
|
||||
|
||||
data = tf.train.load_variable(dir_model, name).squeeze()
|
||||
n_dims = len(data.shape);
|
||||
|
||||
# ftype == 0 -> float32, ftype == 1 -> float16
|
||||
ftype = 0;
|
||||
if use_f16:
|
||||
# match name:
|
||||
# "model/wte"
|
||||
# "model/h.*/attn/c_attn/w"
|
||||
# "model/h.*/attn/c_proj/w"
|
||||
# "model/h.*/mlp/c_fc/w"
|
||||
# "model/h.*/mlp/c_proj/w"
|
||||
if name == "model/wte" or name[-2:] == "/w":
|
||||
print(" Converting to float16")
|
||||
data = data.astype(np.float16)
|
||||
ftype = 1
|
||||
|
||||
# for efficiency - transpose the projection matrices
|
||||
if name[-13:] == "/mlp/c_proj/w":
|
||||
print(" Transposing")
|
||||
data = data.transpose()
|
||||
|
||||
# header
|
||||
str = name.encode('utf-8')
|
||||
fout.write(struct.pack("iii", n_dims, len(str), ftype))
|
||||
for i in range(n_dims):
|
||||
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
||||
fout.write(str);
|
||||
|
||||
# data
|
||||
data.tofile(fout)
|
||||
|
||||
fout.close()
|
||||
|
||||
print("Done. Output file: " + fname_out)
|
||||
print("")
|
@ -0,0 +1,56 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script downloads GPT-2 model files that have already been converted to ggml format.
|
||||
# This way you don't have to convert them yourself.
|
||||
#
|
||||
# If you want to download the original GPT-2 model files, use the "download-model.sh" script instead.
|
||||
|
||||
ggml_path=$(dirname $(realpath $0))
|
||||
|
||||
# GPT-2 models
|
||||
models=( "117M" "345M" "774M" "1558M" )
|
||||
|
||||
# list available models
|
||||
function list_models {
|
||||
printf "\n"
|
||||
printf " Available models:"
|
||||
for model in "${models[@]}"; do
|
||||
printf " $model"
|
||||
done
|
||||
printf "\n\n"
|
||||
}
|
||||
|
||||
if [ "$#" -ne 1 ]; then
|
||||
printf "Usage: $0 <model>\n"
|
||||
list_models
|
||||
|
||||
exit 1
|
||||
fi
|
||||
|
||||
model=$1
|
||||
|
||||
if [[ ! " ${models[@]} " =~ " ${model} " ]]; then
|
||||
printf "Invalid model: $model\n"
|
||||
list_models
|
||||
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# download ggml model
|
||||
|
||||
printf "Downloading ggml model $model ...\n"
|
||||
|
||||
mkdir -p models/gpt-2-$model
|
||||
|
||||
wget --quiet --show-progress -O models/gpt-2-$model/ggml-model.bin https://ggml.ggerganov.com/ggml-model-gpt-2-$model.bin
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
printf "Failed to download ggml model $model \n"
|
||||
printf "Please try again later or download the original GPT-2 model files and convert them yourself.\n"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
printf "Done! Model '$model' saved in 'models/gpt-2-$model/ggml-model.bin'\n"
|
||||
printf "You can now use it like this:\n\n"
|
||||
printf " $ ./bin/gpt-2 -m models/gpt-2-$model/ggml-model.bin -p \"This is an example\"\n"
|
||||
printf "\n"
|
@ -0,0 +1,48 @@
|
||||
#!/bin/bash
|
||||
|
||||
ggml_path=$(dirname $(realpath $0))
|
||||
|
||||
# GPT-2 models
|
||||
models=( "117M" "345M" "774M" "1558M" )
|
||||
|
||||
# list available models
|
||||
function list_models {
|
||||
printf "\n"
|
||||
printf " Available models:"
|
||||
for model in "${models[@]}"; do
|
||||
printf " $model"
|
||||
done
|
||||
printf "\n\n"
|
||||
}
|
||||
|
||||
if [ "$#" -ne 1 ]; then
|
||||
printf "Usage: $0 <model>\n"
|
||||
list_models
|
||||
|
||||
exit 1
|
||||
fi
|
||||
|
||||
model=$1
|
||||
|
||||
if [[ ! " ${models[@]} " =~ " ${model} " ]]; then
|
||||
printf "Invalid model: $model\n"
|
||||
list_models
|
||||
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# download model
|
||||
|
||||
printf "Downloading model $model ...\n"
|
||||
|
||||
mkdir -p models/gpt-2-$model
|
||||
|
||||
for file in checkpoint encoder.json hparams.json model.ckpt.data-00000-of-00001 model.ckpt.index model.ckpt.meta vocab.bpe; do
|
||||
wget --quiet --show-progress -O models/gpt-2-$model/$file https://openaipublic.blob.core.windows.net/gpt-2/models/$model/$file
|
||||
done
|
||||
|
||||
printf "Done! Model '$model' saved in 'models/gpt-2-$model/'\n\n"
|
||||
printf "Run the convert-ckpt-to-ggml.py script to convert the model to ggml format.\n"
|
||||
printf "\n"
|
||||
printf " python $ggml_path/convert-ckpt-to-ggml.py models/gpt-2-$model/\n"
|
||||
printf "\n"
|
@ -0,0 +1,783 @@
|
||||
#include "ggml/ggml.h"
|
||||
|
||||
#include "utils.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
// default hparams (GPT-2 117M)
|
||||
struct gpt2_hparams {
|
||||
int32_t n_vocab = 50257;
|
||||
int32_t n_ctx = 1024;
|
||||
int32_t n_embd = 768;
|
||||
int32_t n_head = 12;
|
||||
int32_t n_layer = 12;
|
||||
int32_t f16 = 1;
|
||||
};
|
||||
|
||||
struct gpt2_layer {
|
||||
// normalization
|
||||
struct ggml_tensor * ln_1_g;
|
||||
struct ggml_tensor * ln_1_b;
|
||||
|
||||
struct ggml_tensor * ln_2_g;
|
||||
struct ggml_tensor * ln_2_b;
|
||||
|
||||
// attention
|
||||
struct ggml_tensor * c_attn_attn_w;
|
||||
struct ggml_tensor * c_attn_attn_b;
|
||||
|
||||
struct ggml_tensor * c_attn_proj_w;
|
||||
struct ggml_tensor * c_attn_proj_b;
|
||||
|
||||
// mlp
|
||||
struct ggml_tensor * c_mlp_fc_w;
|
||||
struct ggml_tensor * c_mlp_fc_b;
|
||||
|
||||
struct ggml_tensor * c_mlp_proj_w_trans; // transposed for efficiency
|
||||
struct ggml_tensor * c_mlp_proj_b;
|
||||
};
|
||||
|
||||
struct gpt2_model {
|
||||
gpt2_hparams hparams;
|
||||
|
||||
// normalization
|
||||
struct ggml_tensor * ln_f_g;
|
||||
struct ggml_tensor * ln_f_b;
|
||||
|
||||
struct ggml_tensor * wte; // position embedding
|
||||
struct ggml_tensor * wpe; // token embedding
|
||||
|
||||
std::vector<gpt2_layer> layers;
|
||||
|
||||
// key + value memory
|
||||
struct ggml_tensor * memory_k;
|
||||
struct ggml_tensor * memory_v;
|
||||
|
||||
//
|
||||
struct ggml_context * ctx;
|
||||
std::map<std::string, struct ggml_tensor *> tensors;
|
||||
};
|
||||
|
||||
// load the model's weights from a file
|
||||
bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab) {
|
||||
printf("%s: loading model from '%s'\n", __func__, fname.c_str());
|
||||
|
||||
auto fin = std::ifstream(fname, std::ios::binary);
|
||||
if (!fin) {
|
||||
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
// verify magic
|
||||
{
|
||||
uint32_t magic;
|
||||
fin.read((char *) &magic, sizeof(magic));
|
||||
if (magic != 0x67676d6c) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// load hparams
|
||||
{
|
||||
auto & hparams = model.hparams;
|
||||
|
||||
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
||||
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
|
||||
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
|
||||
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
|
||||
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
|
||||
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
|
||||
|
||||
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
||||
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
||||
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
||||
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
||||
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
||||
printf("%s: f16 = %d\n", __func__, hparams.f16);
|
||||
}
|
||||
|
||||
// load vocab
|
||||
{
|
||||
int32_t n_vocab = 0;
|
||||
fin.read((char *) &n_vocab, sizeof(n_vocab));
|
||||
|
||||
if (n_vocab != model.hparams.n_vocab) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
|
||||
__func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
|
||||
return false;
|
||||
}
|
||||
|
||||
std::string word;
|
||||
for (int i = 0; i < n_vocab; i++) {
|
||||
uint32_t len;
|
||||
fin.read((char *) &len, sizeof(len));
|
||||
|
||||
word.resize(len);
|
||||
fin.read((char *) word.data(), len);
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.id_to_token[i] = word;
|
||||
}
|
||||
}
|
||||
|
||||
// for the big tensors, we have the option to store the data in 16-bit floats
|
||||
// in order to save memory and also to speed up the computation
|
||||
const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||
|
||||
auto & ctx = model.ctx;
|
||||
|
||||
size_t ctx_size = 0;
|
||||
|
||||
{
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_g
|
||||
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_b
|
||||
|
||||
ctx_size += n_vocab*n_embd*ggml_type_size(wtype); // wte
|
||||
ctx_size += n_ctx*n_embd*ggml_type_size(GGML_TYPE_F32); // wpe
|
||||
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_g
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_b
|
||||
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_g
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_b
|
||||
|
||||
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_size(wtype)); // c_attn_attn_w
|
||||
ctx_size += n_layer*( 3*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_attn_b
|
||||
|
||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_proj_b
|
||||
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_fc_w
|
||||
ctx_size += n_layer*( 4*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_fc_b
|
||||
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_proj_b
|
||||
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_v
|
||||
|
||||
ctx_size += (6 + 12*n_layer)*256; // object overhead
|
||||
|
||||
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
||||
}
|
||||
|
||||
// create the ggml context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = ctx_size,
|
||||
.mem_buffer = NULL,
|
||||
};
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
if (!model.ctx) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// prepare memory for the weights
|
||||
{
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
model.layers.resize(n_layer);
|
||||
|
||||
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
||||
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
|
||||
|
||||
// map by name
|
||||
model.tensors["model/ln_f/g"] = model.ln_f_g;
|
||||
model.tensors["model/ln_f/b"] = model.ln_f_b;
|
||||
|
||||
model.tensors["model/wte"] = model.wte;
|
||||
model.tensors["model/wpe"] = model.wpe;
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, 3*n_embd, n_embd);
|
||||
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
|
||||
|
||||
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
||||
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
|
||||
|
||||
layer.c_mlp_proj_w_trans = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
||||
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
// map by name
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g;
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;
|
||||
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w;
|
||||
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w;
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w_trans;
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b;
|
||||
}
|
||||
}
|
||||
|
||||
// key + value memory
|
||||
{
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
|
||||
const int n_mem = n_layer*n_ctx;
|
||||
const int n_elements = n_embd*n_mem;
|
||||
|
||||
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||
|
||||
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
|
||||
|
||||
printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
|
||||
}
|
||||
|
||||
// load weights
|
||||
{
|
||||
size_t total_size = 0;
|
||||
|
||||
while (true) {
|
||||
int32_t n_dims;
|
||||
int32_t length;
|
||||
int32_t ftype;
|
||||
|
||||
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
||||
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
||||
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
||||
|
||||
if (fin.eof()) {
|
||||
break;
|
||||
}
|
||||
|
||||
int32_t nelements = 1;
|
||||
int32_t ne[2] = { 1, 1 };
|
||||
for (int i = 0; i < n_dims; ++i) {
|
||||
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
||||
nelements *= ne[i];
|
||||
}
|
||||
|
||||
std::string name(length, 0);
|
||||
fin.read(&name[0], length);
|
||||
|
||||
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
||||
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
||||
return false;
|
||||
}
|
||||
|
||||
auto tensor = model.tensors[name.data()];
|
||||
if (ggml_nelements(tensor) != nelements) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
||||
return false;
|
||||
}
|
||||
|
||||
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
||||
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
|
||||
return false;
|
||||
}
|
||||
|
||||
const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
|
||||
|
||||
if (nelements*bpe != ggml_nbytes(tensor)) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
||||
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
||||
return false;
|
||||
}
|
||||
|
||||
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
||||
|
||||
//printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
|
||||
total_size += ggml_nbytes(tensor);
|
||||
}
|
||||
|
||||
printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
|
||||
}
|
||||
|
||||
fin.close();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// evaluate the transformer
|
||||
//
|
||||
// - model: the model
|
||||
// - n_threads: number of threads to use
|
||||
// - n_past: the context size so far
|
||||
// - embd_inp: the embeddings of the tokens in the context
|
||||
// - embd_w: the predicted probabilities of the next token
|
||||
//
|
||||
bool gpt2_eval(
|
||||
const gpt2_model & model,
|
||||
const int n_threads,
|
||||
const int n_past,
|
||||
const std::vector<gpt_vocab::id> & embd_inp,
|
||||
std::vector<float> & embd_w,
|
||||
size_t & mem_per_token) {
|
||||
const int N = embd_inp.size();
|
||||
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_head = hparams.n_head;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
const int d_key = n_embd/n_head;
|
||||
|
||||
static size_t buf_size = 256u*1024*1024;
|
||||
static void * buf = malloc(buf_size);
|
||||
|
||||
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
|
||||
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
|
||||
//printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
|
||||
|
||||
// reallocate
|
||||
buf_size = buf_size_new;
|
||||
buf = realloc(buf, buf_size);
|
||||
if (buf == nullptr) {
|
||||
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = buf_size,
|
||||
.mem_buffer = buf,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
struct ggml_cgraph gf = { .n_threads = n_threads };
|
||||
|
||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
||||
|
||||
struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
for (int i = 0; i < N; ++i) {
|
||||
((int32_t *) position->data)[i] = n_past + i;
|
||||
}
|
||||
|
||||
// wte + wpe
|
||||
struct ggml_tensor * inpL =
|
||||
ggml_add(ctx0,
|
||||
ggml_get_rows(ctx0, model.wte, embd),
|
||||
ggml_get_rows(ctx0, model.wpe, position));
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * cur;
|
||||
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
cur = ggml_norm(ctx0, inpL);
|
||||
|
||||
// cur = ln_1_g*cur + ln_1_b
|
||||
// [ 768, N]
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
|
||||
cur),
|
||||
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
|
||||
}
|
||||
|
||||
// attn
|
||||
// [2304, 768] - model.layers[il].c_attn_attn_w
|
||||
// [2304, 1] - model.layers[il].c_attn_attn_b
|
||||
// [ 768, N] - cur (in)
|
||||
// [2304, N] - cur (out)
|
||||
//
|
||||
// cur = attn_w*cur + attn_b
|
||||
// [2304, N]
|
||||
{
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
ggml_transpose(ctx0, model.layers[il].c_attn_attn_w),
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur),
|
||||
cur);
|
||||
}
|
||||
|
||||
// self-attention
|
||||
{
|
||||
struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd);
|
||||
struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd);
|
||||
struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd);
|
||||
|
||||
// store key and value to memory
|
||||
if (N >= 1) {
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
|
||||
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
|
||||
}
|
||||
|
||||
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
|
||||
// [64, N, 12]
|
||||
struct ggml_tensor * Q =
|
||||
ggml_permute(ctx0,
|
||||
ggml_cpy(ctx0,
|
||||
Qcur,
|
||||
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
|
||||
0, 2, 1, 3);
|
||||
|
||||
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
|
||||
// [64, n_past + N, 12]
|
||||
struct ggml_tensor * K =
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
|
||||
n_embd/n_head, n_head, n_past + N),
|
||||
0, 2, 1, 3);
|
||||
|
||||
// K * Q
|
||||
// [n_past + N, N, 12]
|
||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||
|
||||
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
||||
// [n_past + N, N, 12]
|
||||
struct ggml_tensor * KQ_scaled =
|
||||
ggml_scale(ctx0,
|
||||
KQ,
|
||||
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
|
||||
);
|
||||
|
||||
// KQ_masked = mask_past(KQ_scaled)
|
||||
// [n_past + N, N, 12]
|
||||
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
|
||||
|
||||
// KQ = soft_max(KQ_masked)
|
||||
// [n_past + N, N, 12]
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
|
||||
|
||||
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
|
||||
// [n_past + N, 64, 12]
|
||||
struct ggml_tensor * V_trans =
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
|
||||
n_embd/n_head, n_head, n_past + N),
|
||||
1, 2, 0, 3);
|
||||
|
||||
// KQV = transpose(V) * KQ_soft_max
|
||||
// [64, N, 12]
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
|
||||
|
||||
// KQV_merged = KQV.permute(0, 2, 1, 3)
|
||||
// [64, 12, N]
|
||||
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
|
||||
// cur = KQV_merged.contiguous().view(n_embd, N)
|
||||
// [768, N]
|
||||
cur = ggml_cpy(ctx0,
|
||||
KQV_merged,
|
||||
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
||||
}
|
||||
|
||||
// projection
|
||||
// [ 768, 768] - model.layers[il].c_attn_proj_w
|
||||
// [ 768, 1] - model.layers[il].c_attn_proj_b
|
||||
// [ 768, N] - cur (in)
|
||||
// [ 768, N] - cur (out)
|
||||
//
|
||||
// cur = proj_w*cur + proj_b
|
||||
// [768, N]
|
||||
{
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
ggml_transpose(ctx0, model.layers[il].c_attn_proj_w),
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur),
|
||||
cur);
|
||||
}
|
||||
|
||||
// add the input
|
||||
cur = ggml_add(ctx0, cur, inpL);
|
||||
|
||||
struct ggml_tensor * inpFF = cur;
|
||||
|
||||
// feed-forward network
|
||||
{
|
||||
// norm
|
||||
{
|
||||
cur = ggml_norm(ctx0, inpFF);
|
||||
|
||||
// cur = ln_2_g*cur + ln_2_b
|
||||
// [ 768, N]
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].ln_2_g, cur),
|
||||
cur),
|
||||
ggml_repeat(ctx0, model.layers[il].ln_2_b, cur));
|
||||
}
|
||||
|
||||
// fully connected
|
||||
// [3072, 768] - model.layers[il].c_mlp_fc_w
|
||||
// [3072, 1] - model.layers[il].c_mlp_fc_b
|
||||
// [ 768, N] - cur (in)
|
||||
// [3072, N] - cur (out)
|
||||
//
|
||||
// cur = fc_w*cur + fc_b
|
||||
// [3072, N]
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
ggml_transpose(ctx0, model.layers[il].c_mlp_fc_w),
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),
|
||||
cur);
|
||||
|
||||
// GELU activation
|
||||
// [3072, N]
|
||||
cur = ggml_gelu(ctx0, cur);
|
||||
|
||||
// projection
|
||||
// [ 768, 3072] - model.layers[il].c_mlp_proj_w
|
||||
// [ 768, 1] - model.layers[il].c_mlp_proj_b
|
||||
// [3072, N] - cur (in)
|
||||
// [ 768, N] - cur (out)
|
||||
//
|
||||
// cur = proj_w*cur + proj_b
|
||||
// [768, N]
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_mlp_proj_w_trans,
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),
|
||||
cur);
|
||||
}
|
||||
|
||||
// input for next layer
|
||||
inpL = ggml_add(ctx0, cur, inpFF);
|
||||
}
|
||||
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
inpL = ggml_norm(ctx0, inpL);
|
||||
|
||||
// inpL = ln_f_g*inpL + ln_f_b
|
||||
// [ 768, N]
|
||||
inpL = ggml_add(ctx0,
|
||||
ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.ln_f_g, inpL),
|
||||
inpL),
|
||||
ggml_repeat(ctx0, model.ln_f_b, inpL));
|
||||
}
|
||||
|
||||
// inpL = WTE * inpL
|
||||
// [ 768, 50257] - model.wte
|
||||
// [ 768, N] - inpL
|
||||
inpL = ggml_mul_mat(ctx0, model.wte, inpL);
|
||||
|
||||
// to logits
|
||||
inpL = ggml_soft_max(ctx0, inpL);
|
||||
|
||||
// run the computation
|
||||
ggml_build_forward_expand(&gf, inpL);
|
||||
ggml_graph_compute (ctx0, &gf);
|
||||
|
||||
//if (n_past%100 == 0) {
|
||||
// ggml_graph_print (&gf);
|
||||
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
|
||||
//}
|
||||
|
||||
//embd_w.resize(n_vocab*N);
|
||||
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
||||
|
||||
// return result for just the last token
|
||||
embd_w.resize(n_vocab);
|
||||
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
|
||||
|
||||
if (mem_per_token == 0) {
|
||||
mem_per_token = ggml_used_mem(ctx0)/N;
|
||||
}
|
||||
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
|
||||
|
||||
ggml_free(ctx0);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
const int64_t t_main_start_us = ggml_time_us();
|
||||
|
||||
gpt_params params;
|
||||
params.model = "models/gpt-2-117M/ggml-model.bin";
|
||||
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.seed < 0) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
printf("%s: seed = %d\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.prompt.empty()) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
}
|
||||
|
||||
int64_t t_load_us = 0;
|
||||
|
||||
gpt_vocab vocab;
|
||||
gpt2_model model;
|
||||
|
||||
// load the model
|
||||
{
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!gpt2_model_load(params.model, model, vocab)) {
|
||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
t_load_us = ggml_time_us() - t_start_us;
|
||||
}
|
||||
|
||||
int n_past = 0;
|
||||
|
||||
int64_t t_sample_us = 0;
|
||||
int64_t t_predict_us = 0;
|
||||
|
||||
std::vector<float> embd_w;
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt);
|
||||
|
||||
params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
|
||||
|
||||
printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
printf("\n");
|
||||
|
||||
// submit the input prompt token-by-token
|
||||
// this reduces the memory usage during inference, at the cost of a bit of speed at the beginning
|
||||
std::vector<gpt_vocab::id> embd;
|
||||
|
||||
// determine the required inference memory per token:
|
||||
size_t mem_per_token = 0;
|
||||
gpt2_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, embd_w, mem_per_token);
|
||||
|
||||
for (int i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
|
||||
// predict
|
||||
if (embd.size() > 0) {
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!gpt2_eval(model, params.n_threads, n_past, embd, embd_w, mem_per_token)) {
|
||||
printf("Failed to predict\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
t_predict_us += ggml_time_us() - t_start_us;
|
||||
}
|
||||
|
||||
n_past += embd.size();
|
||||
embd.clear();
|
||||
|
||||
if (i >= embd_inp.size()) {
|
||||
// sample next token
|
||||
const int top_k = params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float temp = params.temp;
|
||||
|
||||
const int n_vocab = model.hparams.n_vocab;
|
||||
|
||||
gpt_vocab::id id = 0;
|
||||
|
||||
{
|
||||
const int64_t t_start_sample_us = ggml_time_us();
|
||||
|
||||
id = gpt_sample_top_k_top_p(vocab, embd_w.data() + (embd_w.size() - n_vocab), top_k, top_p, temp, rng);
|
||||
|
||||
t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||
}
|
||||
|
||||
// add it to the context
|
||||
embd.push_back(id);
|
||||
} else {
|
||||
// if here, it means we are still processing the input prompt
|
||||
for (int k = i; k < embd_inp.size(); k++) {
|
||||
embd.push_back(embd_inp[k]);
|
||||
if (embd.size() > params.n_batch) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
i += embd.size() - 1;
|
||||
}
|
||||
|
||||
// display text
|
||||
for (auto id : embd) {
|
||||
printf("%s", vocab.id_to_token[id].c_str());
|
||||
}
|
||||
fflush(stdout);
|
||||
|
||||
// end of text token
|
||||
if (embd.back() == 50256) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// report timing
|
||||
{
|
||||
const int64_t t_main_end_us = ggml_time_us();
|
||||
|
||||
printf("\n\n");
|
||||
printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
|
||||
printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
|
||||
printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
|
||||
printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
|
||||
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
|
||||
}
|
||||
|
||||
ggml_free(model.ctx);
|
||||
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,6 @@
|
||||
#
|
||||
# gpt-j
|
||||
|
||||
set(TEST_TARGET gpt-j)
|
||||
add_executable(${TEST_TARGET} main.cpp)
|
||||
target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)
|
@ -0,0 +1,155 @@
|
||||
# gpt-j
|
||||
|
||||
Local GPT-J inference on your computer using C/C++
|
||||
|
||||
No video card required. You just need to have 16 GB of RAM.
|
||||
|
||||
For example, you can run this on a 16 GB MacBook M1.
|
||||
|
||||
## Motivation
|
||||
|
||||
The GPT-J 6B model is the open-source alternative to OpenAI's GPT-3. It's basically a neural network that
|
||||
allows you to generate coherent, human-like text given a certain context (prompt).
|
||||
|
||||
The GPT-J model is quite big - the compact version of the model uses 16-bit floating point representation
|
||||
of the weights and is still 12 GB big. This means that in order to run inference on your computer, you
|
||||
would need to have a video card with at least 12 GB of video RAM. Alternatively, you can try to run the
|
||||
python implementations on the CPU, but that would probably not be very efficient as they are primarily
|
||||
optimized for running on a GPU (or at least this is my guess - I don't have much experience with python).
|
||||
|
||||
Looking on the internet, I couldn't find a dedicated CPU implementation that would allow me to run the model
|
||||
without a high-end video card. So I decided to write my own inference using a custom build tensor library.
|
||||
The tensor library (called [ggml](https://github.com/ggerganov/ggml), written in C) is in early development
|
||||
stage, but it already allows me to run the GPT-J model.
|
||||
|
||||
On my MacBook M1 Pro, I achieve an inference speed of about `125 ms/token` or about 2-3 words per second.
|
||||
|
||||
Here is a sample run with prompt `int main(int argc, char ** argv) {`:
|
||||
|
||||
```
|
||||
$ time ./bin/gpt-j -p "int main(int argc, char ** argv) {"
|
||||
|
||||
gptj_model_load: loading model from 'models/gpt-j-6B/ggml-model.bin' - please wait ...
|
||||
gptj_model_load: n_vocab = 50400
|
||||
gptj_model_load: n_ctx = 2048
|
||||
gptj_model_load: n_embd = 4096
|
||||
gptj_model_load: n_head = 16
|
||||
gptj_model_load: n_layer = 28
|
||||
gptj_model_load: n_rot = 64
|
||||
gptj_model_load: f16 = 1
|
||||
gptj_model_load: ggml ctx size = 13334.86 MB
|
||||
gptj_model_load: memory_size = 1792.00 MB, n_mem = 57344
|
||||
gptj_model_load: ................................... done
|
||||
gptj_model_load: model size = 11542.79 MB / num tensors = 285
|
||||
main: number of tokens in prompt = 13
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
(void)argc;
|
||||
(void)argv;
|
||||
|
||||
{
|
||||
struct sockaddr_in addr;
|
||||
int addrlen;
|
||||
char * ip = "192.168.1.4";
|
||||
int i;
|
||||
|
||||
if ( (addrlen = sizeof(addr)) == -1 )
|
||||
return -1;
|
||||
|
||||
for (i = 0; i < 10; ++i) {
|
||||
addr.sin_family = AF_INET;
|
||||
addr.sin_addr.s_addr = inet_addr(ip);
|
||||
|
||||
main: mem per token = 16430420 bytes
|
||||
main: load time = 6211.48 ms
|
||||
main: sample time = 13.74 ms
|
||||
main: predict time = 26420.34 ms / 124.62 ms per token
|
||||
main: total time = 33035.37 ms
|
||||
|
||||
real 0m33.171s
|
||||
user 3m32.269s
|
||||
sys 0m3.686s
|
||||
|
||||
$
|
||||
```
|
||||
|
||||
It took ~6.2 seconds to load the model to memory. After that, it took ~26.4 seconds to generate 200
|
||||
tokens of what looks like to be the beginning of a networking program in C. Pretty cool!
|
||||
|
||||
## Implementation details
|
||||
|
||||
The high level implementation of the model is contained in the [main.cpp](main.cpp) file. The core
|
||||
computations are performed by the `ggml` library.
|
||||
|
||||
The most performance critical part of the implementation is of course the matrix multiplication routine.
|
||||
99% of the time is spent here, so it is important to optimize this as much as possible.
|
||||
|
||||
On Arm64, I utilize the 128-bit NEON intrinsics for 16-bit floating point operations:
|
||||
|
||||
https://github.com/ggerganov/ggml/blob/1548ac6743c594cc920ccb3503444b0e2bdf4d56/src/ggml.c#L187-L243
|
||||
|
||||
These instructions allow each core to operate simultaneously on 64 floating point numbers. I'm no expert
|
||||
in SIMD, but after quite some trials this was the most efficient code for dot product that I could come up
|
||||
with. Combined with the parallel computation on 8 CPU threads, I think I got close to the maximum performance
|
||||
that one could possibly get on the M1 CPU. Still, I'm curious to know if there is a more efficient way to
|
||||
implement this.
|
||||
|
||||
One interesting property of the GPT-J transformer architecture is that it allows you to perform part
|
||||
of the inference in parallel - i.e. the Feed-forward layer can be computed in parallel to the Self-Attention
|
||||
layer:
|
||||
|
||||
https://github.com/ggerganov/ggml/blob/1548ac6743c594cc920ccb3503444b0e2bdf4d56/examples/gpt-j/main.cpp#L507-L531
|
||||
|
||||
So I thought why not bring in the M1 GPU to compute half of the neural network in parallel to the CPU.
|
||||
Thanks to the shared memory model, it was relatively easy to offload half of the computation to the GPU
|
||||
using [Metal Performance Shaders](https://developer.apple.com/documentation/metalperformanceshaders).
|
||||
However, to my surprise, I did not get any performance improvement at all. My conclusion was that the
|
||||
8-thread NEON CPU computation is basically saturating the memory bandwidth of the M1 and since the CPU
|
||||
and the GPU on the MacBook are sharing that bandwidth, it does not help to offload the computation to the
|
||||
GPU. Another observation was that the MPS GPU matrix multiplication using 16-bit floats had the same
|
||||
performance as the 8-thread NEON CPU implementation. Again, I explain this with a saturated memory channel.
|
||||
But of course, I could be totally wrong and somehow my implementation wasn't utilizing the resources
|
||||
correctly.
|
||||
|
||||
Another property of my implementation is that it does not perform any memory allocations once the model
|
||||
is loaded into memory. All required memory is allocated at the start of the program.
|
||||
|
||||
## Usage
|
||||
|
||||
If you want to give this a try and you are on Linux or Mac OS, simply follow these instructions:
|
||||
|
||||
```bash
|
||||
# Clone the ggml library and build the gpt-j example
|
||||
git clone https://github.com/ggerganov/ggml
|
||||
cd ggml
|
||||
mkdir build && cd build
|
||||
cmake ..
|
||||
make -j4 gpt-j
|
||||
|
||||
# Download the ggml-compatible GPT-J 6B model (requires 12GB disk space)
|
||||
../examples/gpt-j/download-ggml-model.sh 6B
|
||||
|
||||
# Run the inference (requires 16GB of CPU RAM)
|
||||
./bin/gpt-j -m models/gpt-j-6B/ggml-model.bin -p "This is an example"
|
||||
```
|
||||
|
||||
To run the `gpt-j` tool, you need the 12GB `ggml-model.bin` file which contains the GPT-J model in
|
||||
[ggml](https://github.com/ggerganov/ggml) format. In the instructions above, I download the binary file
|
||||
directly from one of my servers, using the [download-ggml-model.sh](download-ggml-model.sh) script.
|
||||
|
||||
---
|
||||
|
||||
Alternatively, you can perform the conversion yourself.
|
||||
|
||||
First, you need to download the full GPT-J model from here: https://huggingface.co/EleutherAI/gpt-j-6B
|
||||
|
||||
Note that the full model is quite big - about 72 GB. After you download it, you need to make the
|
||||
conversion using the [convert-h5-to-ggml.py](convert-h5-to-ggml.py) script. This will generate the
|
||||
`ggml-model.bin` file, which you can then use with the `gpt-j` program.
|
||||
|
||||
## GPT-2
|
||||
|
||||
I have also implemented a tool for CPU inference using the smaller GPT-2 models. They have worse
|
||||
quality compared to GPT-J, but are much faster to execute.
|
||||
|
||||
Checkout the GPT-2 example here: [gpt-2](https://github.com/ggerganov/ggml/tree/master/examples/gpt-2)
|
@ -0,0 +1,150 @@
|
||||
# Convert GPT-J-6B h5 transformer model to ggml format
|
||||
#
|
||||
# Load the model using GPTJForCausalLM.
|
||||
# Iterate over all variables and write them to a binary file.
|
||||
#
|
||||
# For each variable, write the following:
|
||||
# - Number of dimensions (int)
|
||||
# - Name length (int)
|
||||
# - Dimensions (int[n_dims])
|
||||
# - Name (char[name_length])
|
||||
# - Data (float[n_dims])
|
||||
#
|
||||
# By default, the bigger matrices are converted to 16-bit floats.
|
||||
# This can be disabled by adding the "use-f32" CLI argument.
|
||||
#
|
||||
# At the start of the ggml file we write the model parameters
|
||||
# and vocabulary.
|
||||
#
|
||||
|
||||
import sys
|
||||
import struct
|
||||
import json
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from transformers import GPTJForCausalLM
|
||||
|
||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8+n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
if len(sys.argv) < 2:
|
||||
print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n")
|
||||
sys.exit(1)
|
||||
|
||||
# output in the same directory as the model
|
||||
dir_model = sys.argv[1]
|
||||
fname_out = sys.argv[1] + "/ggml-model.bin"
|
||||
|
||||
with open(dir_model + "/vocab.json", "r") as f:
|
||||
encoder = json.load(f)
|
||||
|
||||
with open(dir_model + "/added_tokens.json", "r") as f:
|
||||
encoder_added = json.load(f)
|
||||
|
||||
with open(dir_model + "/config.json", "r") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
# use 16-bit or 32-bit floats
|
||||
use_f16 = True
|
||||
if len(sys.argv) > 2:
|
||||
use_f16 = False
|
||||
fname_out = sys.argv[1] + "/ggml-model-f32.bin"
|
||||
|
||||
model = GPTJForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True)
|
||||
#print (model)
|
||||
|
||||
list_vars = model.state_dict()
|
||||
#print (list_vars)
|
||||
|
||||
fout = open(fname_out, "wb")
|
||||
|
||||
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
||||
fout.write(struct.pack("i", hparams["vocab_size"]))
|
||||
fout.write(struct.pack("i", hparams["n_positions"]))
|
||||
fout.write(struct.pack("i", hparams["n_embd"]))
|
||||
fout.write(struct.pack("i", hparams["n_head"]))
|
||||
fout.write(struct.pack("i", hparams["n_layer"]))
|
||||
fout.write(struct.pack("i", hparams["rotary_dim"]))
|
||||
fout.write(struct.pack("i", use_f16))
|
||||
|
||||
byte_encoder = bytes_to_unicode()
|
||||
byte_decoder = {v:k for k, v in byte_encoder.items()}
|
||||
|
||||
fout.write(struct.pack("i", len(encoder) + len(encoder_added)))
|
||||
for key in encoder:
|
||||
text = bytearray([byte_decoder[c] for c in key]).decode('utf-8', errors='replace').encode('utf-8')
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
|
||||
for key in encoder_added:
|
||||
text = bytearray([byte_decoder[c] for c in key]).decode('utf-8', errors='replace').encode('utf-8')
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
|
||||
for name in list_vars.keys():
|
||||
data = list_vars[name].squeeze().numpy()
|
||||
print("Processing variable: " + name + " with shape: ", data.shape)
|
||||
|
||||
# we don't need these
|
||||
if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"):
|
||||
print(" Skipping variable: " + name)
|
||||
continue
|
||||
|
||||
n_dims = len(data.shape);
|
||||
|
||||
# ftype == 0 -> float32, ftype == 1 -> float16
|
||||
ftype = 0;
|
||||
if use_f16:
|
||||
if name[-7:] == ".weight" and n_dims == 2:
|
||||
print(" Converting to float16")
|
||||
data = data.astype(np.float16)
|
||||
ftype = 1
|
||||
|
||||
# for efficiency - transpose these matrices:
|
||||
# "transformer.h.*.mlp.fc_in.weight
|
||||
# "transformer.h.*.attn.out_proj.weight
|
||||
# "transformer.h.*.attn.q_proj.weight"
|
||||
# "transformer.h.*.attn.k_proj.weight"
|
||||
# "transformer.h.*.attn.v_proj.weight"
|
||||
if name.endswith(".mlp.fc_in.weight") or \
|
||||
name.endswith(".attn.out_proj.weight") or \
|
||||
name.endswith(".attn.q_proj.weight") or \
|
||||
name.endswith(".attn.k_proj.weight") or \
|
||||
name.endswith(".attn.v_proj.weight"):
|
||||
print(" Transposing")
|
||||
data = data.transpose()
|
||||
|
||||
# header
|
||||
str = name.encode('utf-8')
|
||||
fout.write(struct.pack("iii", n_dims, len(str), ftype))
|
||||
for i in range(n_dims):
|
||||
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
||||
fout.write(str);
|
||||
|
||||
# data
|
||||
data.tofile(fout)
|
||||
|
||||
fout.close()
|
||||
|
||||
print("Done. Output file: " + fname_out)
|
||||
print("")
|
@ -0,0 +1,56 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script downloads GPT-J model files that have already been converted to ggml format.
|
||||
# This way you don't have to convert them yourself.
|
||||
#
|
||||
# If you want to download the original GPT-J model files, use the "download-model.sh" script instead.
|
||||
|
||||
ggml_path=$(dirname $(realpath $0))
|
||||
|
||||
# GPT-J models
|
||||
models=( "6B" )
|
||||
|
||||
# list available models
|
||||
function list_models {
|
||||
printf "\n"
|
||||
printf " Available models:"
|
||||
for model in "${models[@]}"; do
|
||||
printf " $model"
|
||||
done
|
||||
printf "\n\n"
|
||||
}
|
||||
|
||||
if [ "$#" -ne 1 ]; then
|
||||
printf "Usage: $0 <model>\n"
|
||||
list_models
|
||||
|
||||
exit 1
|
||||
fi
|
||||
|
||||
model=$1
|
||||
|
||||
if [[ ! " ${models[@]} " =~ " ${model} " ]]; then
|
||||
printf "Invalid model: $model\n"
|
||||
list_models
|
||||
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# download ggml model
|
||||
|
||||
printf "Downloading ggml model $model ...\n"
|
||||
|
||||
mkdir -p models/gpt-j-$model
|
||||
|
||||
wget --quiet --show-progress -O models/gpt-j-$model/ggml-model.bin https://ggml.ggerganov.com/ggml-model-gpt-j-$model.bin
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
printf "Failed to download ggml model $model \n"
|
||||
printf "Please try again later or download the original GPT-J model files and convert them yourself.\n"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
printf "Done! Model '$model' saved in 'models/gpt-j-$model/ggml-model.bin'\n"
|
||||
printf "You can now use it like this:\n\n"
|
||||
printf " $ ./bin/gpt-j -m models/gpt-j-$model/ggml-model.bin -p \"This is an example\"\n"
|
||||
printf "\n"
|
@ -0,0 +1,11 @@
|
||||
#!/bin/bash
|
||||
|
||||
printf "To obtain the GPT-J 6B model files, please visit: https://huggingface.co/EleutherAI/gpt-j-6B\n\n"
|
||||
|
||||
printf "The model is very big. For example, the reposirory above is 72GB in size.\n"
|
||||
printf "If you are sure that you want to clone it, simply run the following command:\n\n"
|
||||
|
||||
printf " $ git clone https://huggingface.co/EleutherAI/gpt-j-6B models/gpt-j-6B\n\n"
|
||||
|
||||
printf "Alternatively, use the 'download-ggml-model.sh' script to download a 12GB ggml version of the model.\n"
|
||||
printf "This version is enough to run inference using the ggml library.\n\n"
|
@ -0,0 +1,723 @@
|
||||
#include "ggml/ggml.h"
|
||||
|
||||
#include "utils.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
// default hparams (GPT-J 6B)
|
||||
struct gptj_hparams {
|
||||
int32_t n_vocab = 50400;
|
||||
int32_t n_ctx = 2048;
|
||||
int32_t n_embd = 4096;
|
||||
int32_t n_head = 16;
|
||||
int32_t n_layer = 28;
|
||||
int32_t n_rot = 64;
|
||||
int32_t f16 = 1;
|
||||
};
|
||||
|
||||
struct gptj_layer {
|
||||
// normalization
|
||||
struct ggml_tensor * ln_1_g;
|
||||
struct ggml_tensor * ln_1_b;
|
||||
|
||||
// attention
|
||||
struct ggml_tensor * c_attn_q_proj_w;
|
||||
struct ggml_tensor * c_attn_k_proj_w;
|
||||
struct ggml_tensor * c_attn_v_proj_w;
|
||||
|
||||
struct ggml_tensor * c_attn_proj_w;
|
||||
|
||||
// ff
|
||||
struct ggml_tensor * c_mlp_fc_w;
|
||||
struct ggml_tensor * c_mlp_fc_b;
|
||||
|
||||
struct ggml_tensor * c_mlp_proj_w_trans;
|
||||
struct ggml_tensor * c_mlp_proj_b;
|
||||
};
|
||||
|
||||
struct gptj_model {
|
||||
gptj_hparams hparams;
|
||||
|
||||
// normalization
|
||||
struct ggml_tensor * ln_f_g;
|
||||
struct ggml_tensor * ln_f_b;
|
||||
|
||||
struct ggml_tensor * wte; // position embedding
|
||||
|
||||
struct ggml_tensor * lmh_g; // language model head
|
||||
struct ggml_tensor * lmh_b; // language model bias
|
||||
|
||||
std::vector<gptj_layer> layers;
|
||||
|
||||
// key + value memory
|
||||
struct ggml_tensor * memory_k;
|
||||
struct ggml_tensor * memory_v;
|
||||
|
||||
//
|
||||
struct ggml_context * ctx;
|
||||
std::map<std::string, struct ggml_tensor *> tensors;
|
||||
};
|
||||
|
||||
// load the model's weights from a file
|
||||
bool gptj_model_load(const std::string & fname, gptj_model & model, gpt_vocab & vocab) {
|
||||
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
|
||||
|
||||
auto fin = std::ifstream(fname, std::ios::binary);
|
||||
if (!fin) {
|
||||
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
// verify magic
|
||||
{
|
||||
uint32_t magic;
|
||||
fin.read((char *) &magic, sizeof(magic));
|
||||
if (magic != 0x67676d6c) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// load hparams
|
||||
{
|
||||
auto & hparams = model.hparams;
|
||||
|
||||
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
||||
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
|
||||
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
|
||||
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
|
||||
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
|
||||
fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
|
||||
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
|
||||
|
||||
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
||||
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
||||
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
||||
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
||||
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
||||
printf("%s: n_rot = %d\n", __func__, hparams.n_rot);
|
||||
printf("%s: f16 = %d\n", __func__, hparams.f16);
|
||||
}
|
||||
|
||||
// load vocab
|
||||
{
|
||||
int32_t n_vocab = 0;
|
||||
fin.read((char *) &n_vocab, sizeof(n_vocab));
|
||||
|
||||
if (n_vocab != model.hparams.n_vocab) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
|
||||
__func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
|
||||
return false;
|
||||
}
|
||||
|
||||
std::string word;
|
||||
for (int i = 0; i < n_vocab; i++) {
|
||||
uint32_t len;
|
||||
fin.read((char *) &len, sizeof(len));
|
||||
|
||||
word.resize(len);
|
||||
fin.read((char *) word.data(), len);
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.id_to_token[i] = word;
|
||||
}
|
||||
}
|
||||
|
||||
// for the big tensors, we have the option to store the data in 16-bit floats
|
||||
// in order to save memory and also to speed up the computation
|
||||
const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||
|
||||
auto & ctx = model.ctx;
|
||||
|
||||
size_t ctx_size = 0;
|
||||
|
||||
{
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_g
|
||||
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_b
|
||||
|
||||
ctx_size += n_embd*n_vocab*ggml_type_size(wtype); // wte
|
||||
|
||||
ctx_size += n_embd*n_vocab*ggml_type_size(wtype); // lmh_g
|
||||
ctx_size += n_vocab*ggml_type_size(GGML_TYPE_F32); // lmh_b
|
||||
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_g
|
||||
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_b
|
||||
|
||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_q_proj_w
|
||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_k_proj_w
|
||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_v_proj_w
|
||||
|
||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_proj_w
|
||||
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_fc_w
|
||||
ctx_size += n_layer*( 4*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_fc_b
|
||||
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_proj_w_trans
|
||||
ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_proj_b
|
||||
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_v
|
||||
|
||||
ctx_size += (5 + 10*n_layer)*256; // object overhead
|
||||
|
||||
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
||||
}
|
||||
|
||||
// create the ggml context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = ctx_size,
|
||||
.mem_buffer = NULL,
|
||||
};
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
if (!model.ctx) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// prepare memory for the weights
|
||||
{
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
model.layers.resize(n_layer);
|
||||
|
||||
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
||||
|
||||
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
model.lmh_g = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
||||
model.lmh_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_vocab);
|
||||
|
||||
// map by name
|
||||
model.tensors["transformer.wte.weight"] = model.wte;
|
||||
|
||||
model.tensors["transformer.ln_f.weight"] = model.ln_f_g;
|
||||
model.tensors["transformer.ln_f.bias"] = model.ln_f_b;
|
||||
|
||||
model.tensors["lm_head.weight"] = model.lmh_g;
|
||||
model.tensors["lm_head.bias"] = model.lmh_b;
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.c_attn_q_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||
layer.c_attn_k_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||
layer.c_attn_v_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||
|
||||
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||
|
||||
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
||||
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
|
||||
|
||||
layer.c_mlp_proj_w_trans = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
||||
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
// map by name
|
||||
model.tensors["transformer.h." + std::to_string(i) + ".ln_1.weight"] = layer.ln_1_g;
|
||||
model.tensors["transformer.h." + std::to_string(i) + ".ln_1.bias"] = layer.ln_1_b;
|
||||
|
||||
model.tensors["transformer.h." + std::to_string(i) + ".attn.q_proj.weight"] = layer.c_attn_q_proj_w;
|
||||
model.tensors["transformer.h." + std::to_string(i) + ".attn.k_proj.weight"] = layer.c_attn_k_proj_w;
|
||||
model.tensors["transformer.h." + std::to_string(i) + ".attn.v_proj.weight"] = layer.c_attn_v_proj_w;
|
||||
|
||||
model.tensors["transformer.h." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_proj_w;
|
||||
|
||||
model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.weight"] = layer.c_mlp_fc_w;
|
||||
model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.bias"] = layer.c_mlp_fc_b;
|
||||
|
||||
model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.weight"] = layer.c_mlp_proj_w_trans;
|
||||
model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.bias"] = layer.c_mlp_proj_b;
|
||||
}
|
||||
}
|
||||
|
||||
// key + value memory
|
||||
{
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
|
||||
const int n_mem = n_layer*n_ctx;
|
||||
const int n_elements = n_embd*n_mem;
|
||||
|
||||
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||
|
||||
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
|
||||
|
||||
printf("%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
|
||||
}
|
||||
|
||||
// load weights
|
||||
{
|
||||
int n_tensors = 0;
|
||||
size_t total_size = 0;
|
||||
|
||||
printf("%s: ", __func__);
|
||||
|
||||
while (true) {
|
||||
int32_t n_dims;
|
||||
int32_t length;
|
||||
int32_t ftype;
|
||||
|
||||
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
||||
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
||||
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
||||
|
||||
if (fin.eof()) {
|
||||
break;
|
||||
}
|
||||
|
||||
int32_t nelements = 1;
|
||||
int32_t ne[2] = { 1, 1 };
|
||||
for (int i = 0; i < n_dims; ++i) {
|
||||
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
||||
nelements *= ne[i];
|
||||
}
|
||||
|
||||
std::string name(length, 0);
|
||||
fin.read(&name[0], length);
|
||||
|
||||
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
||||
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
||||
return false;
|
||||
}
|
||||
|
||||
auto tensor = model.tensors[name.data()];
|
||||
if (ggml_nelements(tensor) != nelements) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
||||
return false;
|
||||
}
|
||||
|
||||
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
||||
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
|
||||
return false;
|
||||
}
|
||||
|
||||
const size_t bpe = tensor->type == GGML_TYPE_I8 ? 1 : (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
|
||||
|
||||
if (nelements*bpe != ggml_nbytes(tensor)) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
||||
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
||||
return false;
|
||||
}
|
||||
|
||||
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
||||
|
||||
//printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
|
||||
total_size += ggml_nbytes(tensor);
|
||||
if (++n_tensors % 8 == 0) {
|
||||
printf(".");
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
printf(" done\n");
|
||||
|
||||
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
|
||||
}
|
||||
|
||||
fin.close();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// evaluate the transformer
|
||||
//
|
||||
// - model: the model
|
||||
// - n_threads: number of threads to use
|
||||
// - n_past: the context size so far
|
||||
// - embd_inp: the embeddings of the tokens in the context
|
||||
// - embd_w: the predicted probabilities of the next token
|
||||
//
|
||||
// The GPT-J model requires about 16MB of memory per input token.
|
||||
//
|
||||
bool gptj_eval(
|
||||
const gptj_model & model,
|
||||
const int n_threads,
|
||||
const int n_past,
|
||||
const std::vector<gpt_vocab::id> & embd_inp,
|
||||
std::vector<float> & embd_w,
|
||||
size_t & mem_per_token) {
|
||||
const int N = embd_inp.size();
|
||||
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_head = hparams.n_head;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
const int n_rot = hparams.n_rot;
|
||||
|
||||
const int d_key = n_embd/n_head;
|
||||
|
||||
static size_t buf_size = 256u*1024*1024;
|
||||
static void * buf = malloc(buf_size);
|
||||
|
||||
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
|
||||
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
|
||||
//printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
|
||||
|
||||
// reallocate
|
||||
buf_size = buf_size_new;
|
||||
buf = realloc(buf, buf_size);
|
||||
if (buf == nullptr) {
|
||||
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = buf_size,
|
||||
.mem_buffer = buf,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
struct ggml_cgraph gf = { .n_threads = n_threads };
|
||||
|
||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
||||
|
||||
// wte
|
||||
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd);
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * cur;
|
||||
|
||||
// norm
|
||||
{
|
||||
cur = ggml_norm(ctx0, inpL);
|
||||
|
||||
// cur = ln_1_g*cur + ln_1_b
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
|
||||
cur),
|
||||
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
|
||||
}
|
||||
|
||||
struct ggml_tensor * inpSA = cur;
|
||||
|
||||
// self-attention
|
||||
{
|
||||
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, ggml_transpose(ctx0, model.layers[il].c_attn_q_proj_w), cur);
|
||||
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, ggml_transpose(ctx0, model.layers[il].c_attn_k_proj_w), cur);
|
||||
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, ggml_transpose(ctx0, model.layers[il].c_attn_v_proj_w), cur);
|
||||
|
||||
// store key and value to memory
|
||||
if (N >= 1) {
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
|
||||
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
|
||||
}
|
||||
|
||||
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
|
||||
struct ggml_tensor * Q =
|
||||
ggml_permute(ctx0,
|
||||
ggml_rope(ctx0,
|
||||
ggml_cpy(ctx0,
|
||||
Qcur,
|
||||
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
|
||||
n_past, n_rot, 0),
|
||||
0, 2, 1, 3);
|
||||
|
||||
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
|
||||
struct ggml_tensor * K =
|
||||
ggml_permute(ctx0,
|
||||
ggml_rope(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
|
||||
n_embd/n_head, n_head, n_past + N),
|
||||
n_past, n_rot, 1),
|
||||
0, 2, 1, 3);
|
||||
|
||||
// K * Q
|
||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||
|
||||
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
||||
struct ggml_tensor * KQ_scaled =
|
||||
ggml_scale(ctx0,
|
||||
KQ,
|
||||
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
|
||||
);
|
||||
|
||||
// KQ_masked = mask_past(KQ_scaled)
|
||||
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
|
||||
|
||||
// KQ = soft_max(KQ_masked)
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
|
||||
|
||||
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
|
||||
struct ggml_tensor * V_trans =
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
|
||||
n_embd/n_head, n_head, n_past + N),
|
||||
1, 2, 0, 3);
|
||||
|
||||
// KQV = transpose(V) * KQ_soft_max
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
|
||||
|
||||
// KQV_merged = KQV.permute(0, 2, 1, 3)
|
||||
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
|
||||
// cur = KQV_merged.contiguous().view(n_embd, N)
|
||||
cur = ggml_cpy(ctx0,
|
||||
KQV_merged,
|
||||
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
||||
|
||||
// projection (no bias)
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
ggml_transpose(ctx0, model.layers[il].c_attn_proj_w),
|
||||
cur);
|
||||
}
|
||||
|
||||
struct ggml_tensor * inpFF = cur;
|
||||
|
||||
// feed-forward network
|
||||
// this is independent of the self-attention result, so it could be done in parallel to the self-attention
|
||||
{
|
||||
// note here we pass inpSA instead of cur
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
ggml_transpose(ctx0, model.layers[il].c_mlp_fc_w),
|
||||
inpSA);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),
|
||||
cur);
|
||||
|
||||
// GELU activation
|
||||
cur = ggml_gelu(ctx0, cur);
|
||||
|
||||
// projection
|
||||
// cur = proj_w*cur + proj_b
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_mlp_proj_w_trans,
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),
|
||||
cur);
|
||||
}
|
||||
|
||||
// self-attention + FF
|
||||
cur = ggml_add(ctx0, cur, inpFF);
|
||||
|
||||
// input for next layer
|
||||
inpL = ggml_add(ctx0, cur, inpL);
|
||||
}
|
||||
|
||||
// norm
|
||||
{
|
||||
inpL = ggml_norm(ctx0, inpL);
|
||||
|
||||
// inpL = ln_f_g*inpL + ln_f_b
|
||||
inpL = ggml_add(ctx0,
|
||||
ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.ln_f_g, inpL),
|
||||
inpL),
|
||||
ggml_repeat(ctx0, model.ln_f_b, inpL));
|
||||
}
|
||||
|
||||
// lm_head
|
||||
{
|
||||
inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL);
|
||||
|
||||
inpL = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.lmh_b, inpL),
|
||||
inpL);
|
||||
}
|
||||
|
||||
// to logits
|
||||
inpL = ggml_soft_max(ctx0, inpL);
|
||||
|
||||
// run the computation
|
||||
ggml_build_forward_expand(&gf, inpL);
|
||||
ggml_graph_compute (ctx0, &gf);
|
||||
|
||||
//if (n_past%100 == 0) {
|
||||
// ggml_graph_print (&gf);
|
||||
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
|
||||
//}
|
||||
|
||||
//embd_w.resize(n_vocab*N);
|
||||
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
||||
|
||||
// return result for just the last token
|
||||
embd_w.resize(n_vocab);
|
||||
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
|
||||
|
||||
if (mem_per_token == 0) {
|
||||
mem_per_token = ggml_used_mem(ctx0)/N;
|
||||
}
|
||||
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
|
||||
|
||||
ggml_free(ctx0);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
const int64_t t_main_start_us = ggml_time_us();
|
||||
|
||||
gpt_params params;
|
||||
params.model = "models/gpt-j-6B/ggml-model.bin";
|
||||
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.seed < 0) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
printf("%s: seed = %d\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.prompt.empty()) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
}
|
||||
|
||||
int64_t t_load_us = 0;
|
||||
|
||||
gpt_vocab vocab;
|
||||
gptj_model model;
|
||||
|
||||
// load the model
|
||||
{
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!gptj_model_load(params.model, model, vocab)) {
|
||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
t_load_us = ggml_time_us() - t_start_us;
|
||||
}
|
||||
|
||||
int n_past = 0;
|
||||
|
||||
int64_t t_sample_us = 0;
|
||||
int64_t t_predict_us = 0;
|
||||
|
||||
std::vector<float> embd_w;
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt);
|
||||
|
||||
params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
|
||||
|
||||
printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
printf("\n");
|
||||
|
||||
std::vector<gpt_vocab::id> embd;
|
||||
|
||||
// determine the required inference memory per token:
|
||||
size_t mem_per_token = 0;
|
||||
gptj_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, embd_w, mem_per_token);
|
||||
|
||||
for (int i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
|
||||
// predict
|
||||
if (embd.size() > 0) {
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!gptj_eval(model, params.n_threads, n_past, embd, embd_w, mem_per_token)) {
|
||||
printf("Failed to predict\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
t_predict_us += ggml_time_us() - t_start_us;
|
||||
}
|
||||
|
||||
n_past += embd.size();
|
||||
embd.clear();
|
||||
|
||||
if (i >= embd_inp.size()) {
|
||||
// sample next token
|
||||
const int top_k = params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float temp = params.temp;
|
||||
|
||||
const int n_vocab = model.hparams.n_vocab;
|
||||
|
||||
gpt_vocab::id id = 0;
|
||||
|
||||
{
|
||||
const int64_t t_start_sample_us = ggml_time_us();
|
||||
|
||||
id = gpt_sample_top_k_top_p(vocab, embd_w.data() + (embd_w.size() - n_vocab), top_k, top_p, temp, rng);
|
||||
|
||||
t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||
}
|
||||
|
||||
// add it to the context
|
||||
embd.push_back(id);
|
||||
} else {
|
||||
// if here, it means we are still processing the input prompt
|
||||
for (int k = i; k < embd_inp.size(); k++) {
|
||||
embd.push_back(embd_inp[k]);
|
||||
if (embd.size() > params.n_batch) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
i += embd.size() - 1;
|
||||
}
|
||||
|
||||
// display text
|
||||
for (auto id : embd) {
|
||||
printf("%s", vocab.id_to_token[id].c_str());
|
||||
}
|
||||
fflush(stdout);
|
||||
|
||||
// end of text token
|
||||
if (embd.back() == 50256) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// report timing
|
||||
{
|
||||
const int64_t t_main_end_us = ggml_time_us();
|
||||
|
||||
printf("\n\n");
|
||||
printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
|
||||
printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
|
||||
printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
|
||||
printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
|
||||
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
|
||||
}
|
||||
|
||||
ggml_free(model.ctx);
|
||||
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,336 @@
|
||||
#include "utils.h"
|
||||
|
||||
#include <fstream>
|
||||
#include <regex>
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-s" || arg == "--seed") {
|
||||
params.seed = std::stoi(argv[++i]);
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
params.n_threads = std::stoi(argv[++i]);
|
||||
} else if (arg == "-p" || arg == "--prompt") {
|
||||
params.prompt = argv[++i];
|
||||
} else if (arg == "-n" || arg == "--n_predict") {
|
||||
params.n_predict = std::stoi(argv[++i]);
|
||||
} else if (arg == "--top_k") {
|
||||
params.top_k = std::stoi(argv[++i]);
|
||||
} else if (arg == "--top_p") {
|
||||
params.top_p = std::stof(argv[++i]);
|
||||
} else if (arg == "--temp") {
|
||||
params.temp = std::stof(argv[++i]);
|
||||
} else if (arg == "-b" || arg == "--batch_size") {
|
||||
params.n_batch = std::stoi(argv[++i]);
|
||||
} else if (arg == "-m" || arg == "--model") {
|
||||
params.model = argv[++i];
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
gpt_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
gpt_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void gpt_print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
|
||||
fprintf(stderr, " prompt to start generation with (default: random)\n");
|
||||
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
|
||||
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
|
||||
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
|
||||
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
|
||||
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
||||
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
void replace(std::string & str, const std::string & needle, const std::string & replacement) {
|
||||
size_t pos = 0;
|
||||
while ((pos = str.find(needle, pos)) != std::string::npos) {
|
||||
str.replace(pos, needle.length(), replacement);
|
||||
pos += replacement.length();
|
||||
}
|
||||
}
|
||||
|
||||
// poor-man's JSON parsing
|
||||
std::map<std::string, int32_t> json_parse(const std::string & fname) {
|
||||
std::map<std::string, int32_t> result;
|
||||
|
||||
// read file into string
|
||||
std::string json;
|
||||
{
|
||||
std::ifstream ifs(fname);
|
||||
if (!ifs) {
|
||||
fprintf(stderr, "Failed to open %s\n", fname.c_str());
|
||||
exit(1);
|
||||
}
|
||||
|
||||
json = std::string((std::istreambuf_iterator<char>(ifs)),
|
||||
(std::istreambuf_iterator<char>()));
|
||||
}
|
||||
|
||||
if (json[0] != '{') {
|
||||
return result;
|
||||
}
|
||||
|
||||
// parse json
|
||||
{
|
||||
bool has_key = false;
|
||||
bool in_token = false;
|
||||
|
||||
std::string str_key = "";
|
||||
std::string str_val = "";
|
||||
|
||||
int n = json.size();
|
||||
for (int i = 1; i < n; ++i) {
|
||||
if (!in_token) {
|
||||
if (json[i] == ' ') continue;
|
||||
if (json[i] == '"') {
|
||||
in_token = true;
|
||||
continue;
|
||||
}
|
||||
} else {
|
||||
if (json[i] == '\\' && i+1 < n) {
|
||||
if (has_key == false) {
|
||||
str_key += json[i];
|
||||
} else {
|
||||
str_val += json[i];
|
||||
}
|
||||
++i;
|
||||
} else if (json[i] == '"') {
|
||||
if (has_key == false) {
|
||||
has_key = true;
|
||||
++i;
|
||||
while (json[i] == ' ') ++i;
|
||||
++i; // :
|
||||
while (json[i] == ' ') ++i;
|
||||
if (json[i] != '\"') {
|
||||
while (json[i] != ',' && json[i] != '}') {
|
||||
str_val += json[i++];
|
||||
}
|
||||
has_key = false;
|
||||
} else {
|
||||
in_token = true;
|
||||
continue;
|
||||
}
|
||||
} else {
|
||||
has_key = false;
|
||||
}
|
||||
|
||||
::replace(str_key, "\\u0120", " " ); // \u0120 -> space
|
||||
::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
|
||||
::replace(str_key, "\\\"", "\""); // \\\" -> "
|
||||
|
||||
try {
|
||||
result[str_key] = std::stoi(str_val);
|
||||
} catch (...) {
|
||||
//fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
|
||||
|
||||
}
|
||||
str_key = "";
|
||||
str_val = "";
|
||||
in_token = false;
|
||||
continue;
|
||||
}
|
||||
if (has_key == false) {
|
||||
str_key += json[i];
|
||||
} else {
|
||||
str_val += json[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string gpt_random_prompt(std::mt19937 & rng) {
|
||||
const int r = rng() % 10;
|
||||
switch (r) {
|
||||
case 0: return "So";
|
||||
case 1: return "Once upon a time";
|
||||
case 2: return "When";
|
||||
case 3: return "The";
|
||||
case 4: return "After";
|
||||
case 5: return "If";
|
||||
case 6: return "import";
|
||||
case 7: return "He";
|
||||
case 8: return "She";
|
||||
case 9: return "They";
|
||||
default: return "To";
|
||||
}
|
||||
|
||||
return "The";
|
||||
}
|
||||
|
||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
|
||||
std::vector<std::string> words;
|
||||
|
||||
// first split the text into words
|
||||
{
|
||||
std::string str = text;
|
||||
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
||||
|
||||
std::regex re(pat);
|
||||
std::smatch m;
|
||||
|
||||
while (std::regex_search(str, m, re)) {
|
||||
for (auto x : m) {
|
||||
words.push_back(x);
|
||||
}
|
||||
str = m.suffix();
|
||||
}
|
||||
}
|
||||
|
||||
// find the longest tokens that form the words:
|
||||
std::vector<gpt_vocab::id> tokens;
|
||||
for (const auto & word : words) {
|
||||
if (word.size() == 0) continue;
|
||||
|
||||
int i = 0;
|
||||
int n = word.size();
|
||||
while (i < n) {
|
||||
int j = n;
|
||||
while (j > i) {
|
||||
auto it = vocab.token_to_id.find(word.substr(i, j-i));
|
||||
if (it != vocab.token_to_id.end()) {
|
||||
tokens.push_back(it->second);
|
||||
i = j;
|
||||
break;
|
||||
}
|
||||
--j;
|
||||
}
|
||||
if (i == n) {
|
||||
break;
|
||||
}
|
||||
if (j == i) {
|
||||
auto sub = word.substr(i, 1);
|
||||
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
|
||||
tokens.push_back(vocab.token_to_id.at(sub));
|
||||
} else {
|
||||
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
|
||||
}
|
||||
++i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
|
||||
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
|
||||
|
||||
vocab.token_to_id = ::json_parse(fname);
|
||||
|
||||
for (const auto & kv : vocab.token_to_id) {
|
||||
vocab.id_to_token[kv.second] = kv.first;
|
||||
}
|
||||
|
||||
printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
|
||||
|
||||
// print the vocabulary
|
||||
//for (auto kv : vocab.token_to_id) {
|
||||
// printf("'%s' -> %d\n", kv.first.data(), kv.second);
|
||||
//}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
std::mt19937 & rng) {
|
||||
int n_logits = vocab.id_to_token.size();
|
||||
|
||||
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
||||
logits_id.reserve(n_logits);
|
||||
|
||||
for (int i = 0; i < n_logits; i++) {
|
||||
logits_id.push_back(std::make_pair(logits[i], i));
|
||||
}
|
||||
|
||||
// find the top K tokens
|
||||
std::partial_sort(
|
||||
logits_id.begin(),
|
||||
logits_id.begin() + top_k, logits_id.end(),
|
||||
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
|
||||
logits_id.resize(top_k);
|
||||
|
||||
// normalize
|
||||
{
|
||||
double sum = 0.0f;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
sum += logits_id[i].first;
|
||||
}
|
||||
|
||||
sum = 1.0/sum;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
logits_id[i].first *= sum;
|
||||
}
|
||||
}
|
||||
|
||||
if (top_p < 1.0f) {
|
||||
{
|
||||
double cumsum = 0.0f;
|
||||
for (int i = 0; i < top_k; i++) {
|
||||
cumsum += logits_id[i].first;
|
||||
if (cumsum >= top_p) {
|
||||
logits_id.resize(i+1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// normalize again
|
||||
{
|
||||
double sum = 0.0f;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
sum += logits_id[i].first;
|
||||
}
|
||||
|
||||
sum = 1.0/sum;
|
||||
for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
logits_id[i].first *= sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//printf("\n");
|
||||
//for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), logits_id[i].first);
|
||||
//}
|
||||
//exit(0);
|
||||
|
||||
// sample from the obtained distribution
|
||||
std::vector<double> probs;
|
||||
probs.reserve(logits_id.size());
|
||||
|
||||
for (int i = 0; i < (int) logits_id.size(); i++) {
|
||||
probs.push_back(logits_id[i].first);
|
||||
}
|
||||
|
||||
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
||||
int idx = dist(rng);
|
||||
|
||||
return logits_id[idx].second;
|
||||
}
|
@ -0,0 +1,84 @@
|
||||
// Various helper functions and utilities
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <random>
|
||||
#include <thread>
|
||||
|
||||
//
|
||||
// CLI argument parsing
|
||||
//
|
||||
|
||||
struct gpt_params {
|
||||
int32_t seed = -1; // RNG seed
|
||||
int32_t n_threads = std::min(8, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t n_predict = 200; // new tokens to predict
|
||||
|
||||
// sampling parameters
|
||||
int32_t top_k = 40;
|
||||
float top_p = 0.9f;
|
||||
float temp = 1.0f;
|
||||
|
||||
int32_t n_batch = 8; // batch size for prompt processing
|
||||
|
||||
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
|
||||
std::string prompt;
|
||||
};
|
||||
|
||||
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||
|
||||
std::string gpt_random_prompt(std::mt19937 & rng);
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
|
||||
struct gpt_vocab {
|
||||
using id = int32_t;
|
||||
using token = std::string;
|
||||
|
||||
std::map<token, id> token_to_id;
|
||||
std::map<id, token> id_to_token;
|
||||
};
|
||||
|
||||
void replace(std::string & str, const std::string & needle, const std::string & replacement);
|
||||
|
||||
// poor-man's JSON parsing
|
||||
std::map<std::string, int32_t> json_parse(const std::string & fname);
|
||||
|
||||
// split text into tokens
|
||||
//
|
||||
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
|
||||
//
|
||||
// Regex (Python):
|
||||
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
|
||||
//
|
||||
// Regex (C++):
|
||||
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
|
||||
//
|
||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
|
||||
|
||||
// load the tokens from encoder.json
|
||||
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
|
||||
|
||||
// sample next token given probabilities for each embedding
|
||||
//
|
||||
// - consider only the top K tokens
|
||||
// - from them, consider only the top tokens with cumulative probability > P
|
||||
//
|
||||
// TODO: not sure if this implementation is correct
|
||||
// TODO: temperature is not implemented
|
||||
//
|
||||
gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
const gpt_vocab & vocab,
|
||||
const float * logits,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
std::mt19937 & rng);
|
||||
|
@ -0,0 +1,511 @@
|
||||
#pragma once
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#define GGML_MAX_DIMS 4
|
||||
#define GGML_MAX_NODES 4096
|
||||
#define GGML_MAX_PARAMS 16
|
||||
#define GGML_MAX_CONTEXTS 16
|
||||
|
||||
#ifdef __ARM_NEON
|
||||
// we use the built-in 16-bit float type
|
||||
typedef __fp16 ggml_fp16_t;
|
||||
#else
|
||||
typedef uint16_t ggml_fp16_t;
|
||||
#endif
|
||||
|
||||
float ggml_fp16_to_fp32(ggml_fp16_t x);
|
||||
ggml_fp16_t ggml_fp32_to_fp16(float x);
|
||||
|
||||
struct ggml_object;
|
||||
struct ggml_context;
|
||||
|
||||
enum ggml_type {
|
||||
GGML_TYPE_I8,
|
||||
GGML_TYPE_I16,
|
||||
GGML_TYPE_I32,
|
||||
GGML_TYPE_F16,
|
||||
GGML_TYPE_F32,
|
||||
GGML_TYPE_COUNT,
|
||||
};
|
||||
|
||||
enum ggml_op {
|
||||
GGML_OP_NONE = 0,
|
||||
|
||||
GGML_OP_DUP,
|
||||
GGML_OP_ADD,
|
||||
GGML_OP_SUB,
|
||||
GGML_OP_MUL,
|
||||
GGML_OP_DIV,
|
||||
GGML_OP_SQR,
|
||||
GGML_OP_SQRT,
|
||||
GGML_OP_SUM,
|
||||
GGML_OP_MEAN,
|
||||
GGML_OP_REPEAT,
|
||||
GGML_OP_ABS,
|
||||
GGML_OP_SGN,
|
||||
GGML_OP_NEG,
|
||||
GGML_OP_STEP,
|
||||
GGML_OP_RELU,
|
||||
GGML_OP_GELU,
|
||||
GGML_OP_NORM, // normalize
|
||||
|
||||
GGML_OP_MUL_MAT,
|
||||
|
||||
GGML_OP_SCALE,
|
||||
GGML_OP_CPY,
|
||||
GGML_OP_RESHAPE,
|
||||
GGML_OP_VIEW,
|
||||
GGML_OP_PERMUTE,
|
||||
GGML_OP_TRANSPOSE,
|
||||
GGML_OP_GET_ROWS,
|
||||
GGML_OP_DIAG_MASK_INF,
|
||||
GGML_OP_SOFT_MAX,
|
||||
GGML_OP_ROPE,
|
||||
|
||||
GGML_OP_COUNT,
|
||||
};
|
||||
|
||||
// n-dimensional tensor
|
||||
struct ggml_tensor {
|
||||
enum ggml_type type;
|
||||
|
||||
int n_dims;
|
||||
int ne[GGML_MAX_DIMS]; // number of elements
|
||||
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
||||
// nb[0] = sizeof(type)
|
||||
// nb[1] = nb[0] * ne[0] + padding
|
||||
// nb[i] = nb[i-1] * ne[i-1]
|
||||
|
||||
// compute data
|
||||
enum ggml_op op;
|
||||
|
||||
bool is_param;
|
||||
|
||||
struct ggml_tensor * grad;
|
||||
struct ggml_tensor * src0;
|
||||
struct ggml_tensor * src1;
|
||||
|
||||
// thread scheduling
|
||||
int n_tasks;
|
||||
|
||||
// performance
|
||||
int perf_runs;
|
||||
int64_t perf_cycles;
|
||||
int64_t perf_time_us;
|
||||
|
||||
void * data;
|
||||
char pad[8];
|
||||
};
|
||||
|
||||
// computation graph
|
||||
struct ggml_cgraph {
|
||||
int n_nodes;
|
||||
int n_leafs;
|
||||
int n_threads;
|
||||
|
||||
size_t work_size;
|
||||
struct ggml_tensor * work;
|
||||
|
||||
struct ggml_tensor * nodes[GGML_MAX_NODES];
|
||||
struct ggml_tensor * grads[GGML_MAX_NODES];
|
||||
struct ggml_tensor * leafs[GGML_MAX_NODES];
|
||||
|
||||
// performance
|
||||
int perf_runs;
|
||||
int64_t perf_cycles;
|
||||
int64_t perf_time_us;
|
||||
};
|
||||
|
||||
struct ggml_init_params {
|
||||
// memory pool
|
||||
size_t mem_size; // bytes
|
||||
void * mem_buffer; // if NULL, memory will be allocated internally
|
||||
};
|
||||
|
||||
int64_t ggml_time_ms(void);
|
||||
int64_t ggml_time_us(void);
|
||||
int64_t ggml_cycles(void);
|
||||
int64_t ggml_cycles_per_ms(void);
|
||||
|
||||
void ggml_print_object (const struct ggml_object * obj);
|
||||
void ggml_print_objects(const struct ggml_context * ctx);
|
||||
|
||||
int ggml_nelements(const struct ggml_tensor * tensor);
|
||||
size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
||||
|
||||
size_t ggml_type_size (enum ggml_type type);
|
||||
size_t ggml_element_size(const struct ggml_tensor * tensor);
|
||||
|
||||
struct ggml_context * ggml_init(struct ggml_init_params params);
|
||||
void ggml_free(struct ggml_context * ctx);
|
||||
|
||||
size_t ggml_used_mem(const struct ggml_context * ctx);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int n_dims,
|
||||
const int *ne);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_1d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int ne0);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_2d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int ne0,
|
||||
int ne1);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_3d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_4d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3);
|
||||
|
||||
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
||||
|
||||
struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
||||
struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
|
||||
|
||||
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
||||
struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
||||
|
||||
float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
||||
void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
||||
|
||||
void * ggml_get_data (const struct ggml_tensor * tensor);
|
||||
float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
||||
|
||||
//
|
||||
// operations on tensors with backpropagation
|
||||
//
|
||||
|
||||
struct ggml_tensor * ggml_dup(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
struct ggml_tensor * ggml_add(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
struct ggml_tensor * ggml_sub(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
struct ggml_tensor * ggml_mul(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
struct ggml_tensor * ggml_div(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
struct ggml_tensor * ggml_sqr(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
struct ggml_tensor * ggml_sqrt(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// return scalar
|
||||
// TODO: compute sum along rows
|
||||
struct ggml_tensor * ggml_sum(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// mean along rows
|
||||
struct ggml_tensor * ggml_mean(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// if a is the same shape as b, and a is not parameter, return a
|
||||
// otherwise, return a new tensor: repeat(a) to fit in b
|
||||
struct ggml_tensor * ggml_repeat(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
struct ggml_tensor * ggml_abs(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
struct ggml_tensor * ggml_sgn(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
struct ggml_tensor * ggml_neg(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
struct ggml_tensor * ggml_step(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
struct ggml_tensor * ggml_relu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// TODO: double-check this computation is correct
|
||||
struct ggml_tensor * ggml_gelu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// normalize along rows
|
||||
// TODO: eps is hardcoded to 1e-5 for now
|
||||
struct ggml_tensor * ggml_norm(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// A: m rows, n columns
|
||||
// B: p rows, n columns (i.e. we transpose it internally)
|
||||
// result is m columns, p rows
|
||||
struct ggml_tensor * ggml_mul_mat(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
//
|
||||
// operations on tensors without backpropagation
|
||||
//
|
||||
|
||||
// in-place, returns view(a)
|
||||
struct ggml_tensor * ggml_scale(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// a -> b, return view(b)
|
||||
struct ggml_tensor * ggml_cpy(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// return view(a), b specifies the new shape
|
||||
// TODO: when we start computing gradient, make a copy instead of view
|
||||
struct ggml_tensor * ggml_reshape(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// return view(a)
|
||||
// TODO: when we start computing gradient, make a copy instead of view
|
||||
struct ggml_tensor * ggml_reshape_2d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int ne0,
|
||||
int ne1);
|
||||
|
||||
// return view(a)
|
||||
// TODO: when we start computing gradient, make a copy instead of view
|
||||
struct ggml_tensor * ggml_reshape_3d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2);
|
||||
|
||||
// offset in bytes
|
||||
struct ggml_tensor * ggml_view_1d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int ne0,
|
||||
size_t offset);
|
||||
|
||||
struct ggml_tensor * ggml_view_2d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int ne0,
|
||||
int ne1,
|
||||
size_t nb1, // row stride in bytes
|
||||
size_t offset);
|
||||
|
||||
struct ggml_tensor * ggml_permute(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int axis0,
|
||||
int axis1,
|
||||
int axis2,
|
||||
int axis3);
|
||||
|
||||
// alias for ggml_permute(ctx, a, 1, 0, 2, 3)
|
||||
struct ggml_tensor * ggml_transpose(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
struct ggml_tensor * ggml_get_rows(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// set elements above the diagonal to -INF
|
||||
// in-place, returns view(a)
|
||||
struct ggml_tensor * ggml_diag_mask_inf(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_past);
|
||||
|
||||
// in-place, returns view(a)
|
||||
struct ggml_tensor * ggml_soft_max(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// rotary position embedding
|
||||
// in-place, returns view(a)
|
||||
// if mode == 1, skip n_past elements
|
||||
// TODO: avoid creating a new tensor every time
|
||||
struct ggml_tensor * ggml_rope(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_past,
|
||||
int n_dims,
|
||||
int mode);
|
||||
|
||||
//
|
||||
// automatic differentiation
|
||||
//
|
||||
|
||||
void ggml_set_param(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * tensor);
|
||||
|
||||
void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
||||
|
||||
struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
|
||||
struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
|
||||
|
||||
void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
||||
void ggml_graph_reset (struct ggml_cgraph * cgraph);
|
||||
|
||||
// print info and performance information for the graph
|
||||
void ggml_graph_print(const struct ggml_cgraph * cgraph);
|
||||
|
||||
// dump the graph into a file using the dot format
|
||||
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
||||
|
||||
//
|
||||
// optimization
|
||||
//
|
||||
|
||||
// optimization methods
|
||||
enum ggml_opt_type {
|
||||
GGML_OPT_ADAM,
|
||||
GGML_OPT_LBFGS,
|
||||
};
|
||||
|
||||
// linesearch methods
|
||||
enum ggml_linesearch {
|
||||
GGML_LINESEARCH_DEFAULT = 1,
|
||||
|
||||
GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
|
||||
GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
|
||||
GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
|
||||
};
|
||||
|
||||
// optimization return values
|
||||
enum ggml_opt_result {
|
||||
GGML_OPT_OK = 0,
|
||||
GGML_OPT_DID_NOT_CONVERGE,
|
||||
GGML_OPT_NO_CONTEXT,
|
||||
GGML_OPT_INVALID_WOLFE,
|
||||
GGML_OPT_FAIL,
|
||||
|
||||
GGML_LINESEARCH_FAIL = -128,
|
||||
GGML_LINESEARCH_MINIMUM_STEP,
|
||||
GGML_LINESEARCH_MAXIMUM_STEP,
|
||||
GGML_LINESEARCH_MAXIMUM_ITERATIONS,
|
||||
GGML_LINESEARCH_INVALID_PARAMETERS,
|
||||
};
|
||||
|
||||
// optimization parameters
|
||||
//
|
||||
// see ggml.c (ggml_opt_default_params) for default values
|
||||
//
|
||||
struct ggml_opt_params {
|
||||
enum ggml_opt_type type;
|
||||
|
||||
int n_threads;
|
||||
|
||||
// delta-based convergence test
|
||||
//
|
||||
// if past == 0 - disabled
|
||||
// if past > 0:
|
||||
// stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
|
||||
//
|
||||
int past;
|
||||
float delta;
|
||||
|
||||
// maximum number of iterations without improvement
|
||||
//
|
||||
// if 0 - disabled
|
||||
// if > 0:
|
||||
// assume convergence if no cost improvement in this number of iterations
|
||||
//
|
||||
int max_no_improvement;
|
||||
|
||||
bool print_forward_graph;
|
||||
bool print_backward_graph;
|
||||
|
||||
union {
|
||||
// ADAM parameters
|
||||
struct {
|
||||
int n_iter;
|
||||
|
||||
float alpha; // learning rate
|
||||
float beta1;
|
||||
float beta2;
|
||||
float eps; // epsilon for numerical stability
|
||||
float eps_f; // epsilon for convergence test
|
||||
float eps_g; // epsilon for convergence test
|
||||
} adam;
|
||||
|
||||
// LBFGS parameters
|
||||
struct {
|
||||
int m; // number of corrections to approximate the inv. Hessian
|
||||
int n_iter;
|
||||
int max_linesearch;
|
||||
|
||||
float eps; // convergence tolerance
|
||||
float ftol; // line search tolerance
|
||||
float wolfe;
|
||||
float min_step;
|
||||
float max_step;
|
||||
|
||||
enum ggml_linesearch linesearch;
|
||||
} lbfgs;
|
||||
};
|
||||
};
|
||||
|
||||
struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
|
||||
|
||||
// optimize the function defined by the tensor f
|
||||
enum ggml_opt_result ggml_opt(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_opt_params params,
|
||||
struct ggml_tensor * f);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -0,0 +1,85 @@
|
||||
if (GGML_ALL_WARNINGS)
|
||||
if (CMAKE_COMPILER_IS_GNUCC OR CMAKE_C_COMPILER_ID MATCHES "Clang")
|
||||
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall -Wextra")
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} \
|
||||
-Wall \
|
||||
-Wextra \
|
||||
-Wpedantic \
|
||||
-Wshadow \
|
||||
-Wcast-qual \
|
||||
-Wstrict-prototypes \
|
||||
-Wpointer-arith \
|
||||
")
|
||||
else()
|
||||
# todo : windows
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# compiler flags
|
||||
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Werror=vla")
|
||||
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fno-math-errno -ffinite-math-only -funsafe-math-optimizations")
|
||||
|
||||
message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}")
|
||||
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
|
||||
message(STATUS "ARM detected")
|
||||
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mcpu=apple-m1")
|
||||
else()
|
||||
message(STATUS "x86 detected")
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx -mavx2 -mfma -mf16c")
|
||||
endif()
|
||||
|
||||
|
||||
# ggml
|
||||
|
||||
set(TARGET ggml)
|
||||
|
||||
# on APPLE - include Accelerate framework
|
||||
#if (APPLE)
|
||||
# find_library(ACCELERATE_FRAMEWORK Accelerate)
|
||||
# if (ACCELERATE_FRAMEWORK)
|
||||
# message(STATUS "Accelerate framework found")
|
||||
#
|
||||
# set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
|
||||
# set(GGML_EXTRA_FLAGS ${GGML_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
|
||||
# else()
|
||||
# message(WARNING "Accelerate framework not found")
|
||||
# endif()
|
||||
#endif()
|
||||
|
||||
add_library(${TARGET}
|
||||
ggml.c
|
||||
)
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC
|
||||
.
|
||||
../include
|
||||
)
|
||||
|
||||
target_link_libraries(${TARGET} PUBLIC m ${GGML_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
target_link_libraries(${TARGET} PUBLIC
|
||||
${CMAKE_DL_LIBS}
|
||||
)
|
||||
|
||||
target_compile_definitions(${TARGET} PUBLIC
|
||||
GGML_SHARED
|
||||
)
|
||||
endif()
|
||||
|
||||
target_compile_definitions(${TARGET} PUBLIC
|
||||
${GGML_EXTRA_FLAGS}
|
||||
)
|
||||
|
||||
if (MINGW)
|
||||
target_link_libraries(${TARGET} PUBLIC
|
||||
stdc++
|
||||
)
|
||||
endif()
|
||||
|
||||
install(TARGETS ${TARGET}
|
||||
LIBRARY DESTINATION lib
|
||||
ARCHIVE DESTINATION lib/static
|
||||
)
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,74 @@
|
||||
#
|
||||
# test-vec0
|
||||
|
||||
set(TEST_TARGET test-vec0)
|
||||
add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
|
||||
target_link_libraries(${TEST_TARGET} PRIVATE ggml)
|
||||
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
|
||||
|
||||
#
|
||||
# test-vec1 (x86)
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "x86")
|
||||
set(TEST_TARGET test-vec1)
|
||||
add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
|
||||
target_link_libraries(${TEST_TARGET} PRIVATE ggml)
|
||||
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
|
||||
set_target_properties(${TEST_TARGET} PROPERTIES COMPILE_FLAGS "-mavx -mavx2 -mfma -mf16c")
|
||||
endif()
|
||||
|
||||
#
|
||||
# test-vec2 (arm)
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm")
|
||||
set(TEST_TARGET test-vec2)
|
||||
add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
|
||||
target_link_libraries(${TEST_TARGET} PRIVATE ggml)
|
||||
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
|
||||
endif()
|
||||
|
||||
#
|
||||
# test-grad0
|
||||
|
||||
set(TEST_TARGET test-grad0)
|
||||
add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
|
||||
target_link_libraries(${TEST_TARGET} PRIVATE ggml)
|
||||
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
|
||||
|
||||
#
|
||||
# test-mul-mat
|
||||
|
||||
set(TEST_TARGET test-mul-mat0)
|
||||
add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
|
||||
target_link_libraries(${TEST_TARGET} PRIVATE ggml)
|
||||
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
|
||||
|
||||
#
|
||||
# test0
|
||||
|
||||
set(TEST_TARGET test0)
|
||||
add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
|
||||
target_link_libraries(${TEST_TARGET} PRIVATE ggml)
|
||||
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
|
||||
|
||||
#
|
||||
# test1
|
||||
|
||||
set(TEST_TARGET test1)
|
||||
add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
|
||||
target_link_libraries(${TEST_TARGET} PRIVATE ggml)
|
||||
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
|
||||
|
||||
#
|
||||
# test2
|
||||
|
||||
set(TEST_TARGET test2)
|
||||
add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
|
||||
target_link_libraries(${TEST_TARGET} PRIVATE ggml)
|
||||
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
|
||||
|
||||
#
|
||||
# test3
|
||||
|
||||
set(TEST_TARGET test3)
|
||||
add_executable(${TEST_TARGET} ${TEST_TARGET}.c)
|
||||
target_link_libraries(${TEST_TARGET} PRIVATE ggml)
|
||||
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}>)
|
@ -0,0 +1,378 @@
|
||||
#include "ggml/ggml.h"
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
|
||||
#define MAX_NARGS 2
|
||||
|
||||
float frand() {
|
||||
return (float)rand()/(float)RAND_MAX;
|
||||
}
|
||||
|
||||
int irand(int n) {
|
||||
return rand()%n;
|
||||
}
|
||||
|
||||
void get_random_dims(int * dims, int ndims) {
|
||||
dims[0] = dims[1] = dims[2] = dims[3] = 1;
|
||||
|
||||
for (int i = 0; i < ndims; i++) {
|
||||
dims[i] = 1 + irand(4);
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor * get_random_tensor(
|
||||
struct ggml_context * ctx0,
|
||||
int ndims,
|
||||
int ne[],
|
||||
float fmin,
|
||||
float fmax) {
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
|
||||
|
||||
switch (ndims) {
|
||||
case 1:
|
||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
||||
((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
for (int i1 = 0; i1 < ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
||||
((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 3:
|
||||
for (int i2 = 0; i2 < ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
||||
((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 4:
|
||||
for (int i3 = 0; i3 < ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
||||
((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
};
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
float get_element(const struct ggml_tensor * t, int idx) {
|
||||
return ((float *)t->data)[idx];
|
||||
}
|
||||
|
||||
void set_element(struct ggml_tensor * t, int idx, float value) {
|
||||
((float *)t->data)[idx] = value;
|
||||
}
|
||||
|
||||
bool check_gradient(
|
||||
const char * op_name,
|
||||
struct ggml_context * ctx0,
|
||||
struct ggml_tensor * x[],
|
||||
struct ggml_tensor * f,
|
||||
int ndims,
|
||||
int nargs,
|
||||
float eps,
|
||||
float max_error_abs,
|
||||
float max_error_rel) {
|
||||
|
||||
struct ggml_cgraph gf = ggml_build_forward (f);
|
||||
struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
|
||||
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
ggml_graph_reset (&gf);
|
||||
ggml_set_f32 (f->grad, 1.0f);
|
||||
ggml_graph_compute(ctx0, &gb);
|
||||
|
||||
ggml_graph_dump_dot(&gf, NULL, "test-grad0-forward.dot");
|
||||
ggml_graph_dump_dot(&gb, &gf, "test-grad0-backward.dot");
|
||||
|
||||
for (int i = 0; i < nargs; ++i) {
|
||||
const int nelements = ggml_nelements(x[i]);
|
||||
for (int k = 0; k < nelements; ++k) {
|
||||
// compute gradient using finite differences
|
||||
const float x0 = get_element(x[i], k);
|
||||
|
||||
set_element(x[i], k, x0 + eps);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
const float f0 = ggml_get_f32_1d(f, 0);
|
||||
|
||||
set_element(x[i], k, x0 - eps);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
const float f1 = ggml_get_f32_1d(f, 0);
|
||||
|
||||
const float g0 = (f0 - f1)/(2.0f*eps);
|
||||
|
||||
set_element(x[i], k, x0);
|
||||
|
||||
// compute gradient using backward graph
|
||||
ggml_graph_reset (&gf);
|
||||
ggml_set_f32 (f->grad, 1.0f);
|
||||
ggml_graph_compute(ctx0, &gb);
|
||||
|
||||
const float g1 = get_element(x[i]->grad, k);
|
||||
|
||||
const float error_abs = fabsf(g0 - g1);
|
||||
const float error_rel = g0 != 0 ? fabsf(g0 - g1)/fabs(g0) : 0;
|
||||
|
||||
if (error_abs > max_error_abs || error_rel > max_error_rel) {
|
||||
printf("%s: ndims=%d, i=%d, k=%d, g0=%f, g1=%f, error_abs=%f, error_rel=%f\n",
|
||||
op_name, ndims, i, k, g0, g1, error_abs, error_rel);
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// TODO: clean-up this ..
|
||||
bool check_mat_mul(
|
||||
const struct ggml_tensor * y,
|
||||
const struct ggml_tensor * x0,
|
||||
const struct ggml_tensor * x1) {
|
||||
float * dst = (float *) y->data;
|
||||
float * src0 = (float *) x0->data;
|
||||
float * src1 = (float *) x1->data;
|
||||
|
||||
const int nc = x0->ne[1];
|
||||
const int nr = x1->ne[1];
|
||||
const int nk = x0->ne[0];
|
||||
|
||||
printf("check_mat_mul: nc=%d, nr=%d, nk=%d\n", nc, nr, nk);
|
||||
|
||||
printf("x0:\n");
|
||||
for (int j = 0; j < x0->ne[1]; ++j) {
|
||||
for (int i = 0; i < x0->ne[0]; ++i) {
|
||||
printf("%6.3f ", src0[j*nk + i]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
printf("x1:\n");
|
||||
for (int j = 0; j < x1->ne[1]; ++j) {
|
||||
for (int i = 0; i < x1->ne[0]; ++i) {
|
||||
printf("%6.3f ", src1[j*nk + i]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
printf("y: n_dims = %d, (%d, %d)\n", y->n_dims, y->ne[0], y->ne[1]);
|
||||
for (int j = 0; j < y->ne[1]; ++j) {
|
||||
for (int i = 0; i < y->ne[0]; ++i) {
|
||||
printf("%6.3f ", dst[j*nr + i]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
for (int i = 0; i < nr; ++i) {
|
||||
for (int j = 0; j < nc; ++j) {
|
||||
float sum = 0.0f;
|
||||
|
||||
for (int k = 0; k < nk; ++k) {
|
||||
sum += src0[j*nk + k]*src1[i*nk + k];
|
||||
}
|
||||
|
||||
if (fabsf(dst[i*nc + j] - sum) > 1e-5f) {
|
||||
printf("check_mat_mul: dst[%d] = %f, sum = %f\n", i*nc + j, dst[i*nc + j], sum);
|
||||
assert(false);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, const char ** argv) {
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = 128*1024*1024,
|
||||
.mem_buffer = NULL,
|
||||
};
|
||||
|
||||
int ne[4];
|
||||
|
||||
for (int iter = 0; iter < 1000; ++iter) {
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
get_random_dims(ne, 4);
|
||||
|
||||
struct ggml_tensor * x[MAX_NARGS];
|
||||
|
||||
// add
|
||||
{
|
||||
const int nargs = 2;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
for (int i = 0; i < nargs; ++i) {
|
||||
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
ggml_set_param(ctx0, x[i]);
|
||||
}
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_add(ctx0, x[0], x[1]));
|
||||
|
||||
check_gradient("add", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
|
||||
}
|
||||
}
|
||||
|
||||
// sub
|
||||
{
|
||||
const int nargs = 2;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
for (int i = 0; i < nargs; ++i) {
|
||||
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
ggml_set_param(ctx0, x[i]);
|
||||
}
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sub(ctx0, x[0], x[1]));
|
||||
|
||||
check_gradient("sub", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
|
||||
}
|
||||
}
|
||||
|
||||
// mul
|
||||
{
|
||||
const int nargs = 2;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
for (int i = 0; i < nargs; ++i) {
|
||||
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
ggml_set_param(ctx0, x[i]);
|
||||
}
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_mul(ctx0, x[0], x[1]));
|
||||
|
||||
check_gradient("mul", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
|
||||
}
|
||||
}
|
||||
|
||||
// div
|
||||
{
|
||||
const int nargs = 2;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
for (int i = 0; i < nargs; ++i) {
|
||||
x[i] = get_random_tensor(ctx0, ndims, ne, 0.5f, 1.0f);
|
||||
ggml_set_param(ctx0, x[i]);
|
||||
}
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_div(ctx0, x[0], x[1]));
|
||||
|
||||
check_gradient("div", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-2f);
|
||||
}
|
||||
}
|
||||
|
||||
// sqr
|
||||
{
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
for (int i = 0; i < nargs; ++i) {
|
||||
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
ggml_set_param(ctx0, x[i]);
|
||||
}
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, x[0]));
|
||||
|
||||
check_gradient("sqr", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
|
||||
}
|
||||
}
|
||||
|
||||
// sqrt
|
||||
{
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
for (int i = 0; i < nargs; ++i) {
|
||||
x[i] = get_random_tensor(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f);
|
||||
ggml_set_param(ctx0, x[i]);
|
||||
}
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqrt(ctx0, x[0]));
|
||||
|
||||
check_gradient("sqrt", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-1f);
|
||||
}
|
||||
}
|
||||
|
||||
// sum
|
||||
{
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
for (int i = 0; i < nargs; ++i) {
|
||||
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
ggml_set_param(ctx0, x[i]);
|
||||
}
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, x[0]);
|
||||
|
||||
check_gradient("sum", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
|
||||
}
|
||||
}
|
||||
|
||||
// abs (finite differences do not work)
|
||||
//{
|
||||
// const int nargs = 1;
|
||||
|
||||
// for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
// for (int i = 0; i < nargs; ++i) {
|
||||
// x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
// ggml_set_param(ctx0, x[i]);
|
||||
// }
|
||||
|
||||
// struct ggml_tensor * f = ggml_sum(ctx0, ggml_abs(ctx0, x[0]));
|
||||
|
||||
// check_gradient("abs", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-3f);
|
||||
// }
|
||||
//}
|
||||
|
||||
// mul_mat
|
||||
{
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
{
|
||||
int ne2[4];
|
||||
get_random_dims(ne2, 4);
|
||||
ne2[0] = ne[0];
|
||||
x[1] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f);
|
||||
}
|
||||
|
||||
ggml_set_param(ctx0, x[0]);
|
||||
|
||||
struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]);
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, m);
|
||||
|
||||
printf("testing: mul_mat, [%d, %d] * [%d, %d]\n",
|
||||
x[1]->ne[0], x[1]->ne[1], x[0]->ne[0], x[0]->ne[1]);
|
||||
|
||||
check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
|
||||
check_mat_mul(m, x[1], x[0]);
|
||||
}
|
||||
}
|
||||
|
||||
ggml_free(ctx0);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,316 @@
|
||||
#include "ggml/ggml.h"
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
|
||||
#define MAX_NARGS 2
|
||||
|
||||
float frand() {
|
||||
return (float)rand()/(float)RAND_MAX;
|
||||
}
|
||||
|
||||
int irand(int n) {
|
||||
return rand()%n;
|
||||
}
|
||||
|
||||
void get_random_dims(int * dims, int ndims) {
|
||||
dims[0] = dims[1] = dims[2] = dims[3] = 1;
|
||||
|
||||
for (int i = 0; i < ndims; i++) {
|
||||
dims[i] = 1 + irand(4);
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor * get_random_tensor(
|
||||
struct ggml_context * ctx0,
|
||||
int ndims,
|
||||
int ne[],
|
||||
float fmin,
|
||||
float fmax) {
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
|
||||
|
||||
switch (ndims) {
|
||||
case 1:
|
||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
||||
((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
for (int i1 = 0; i1 < ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
||||
((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 3:
|
||||
for (int i2 = 0; i2 < ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
||||
((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 4:
|
||||
for (int i3 = 0; i3 < ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
||||
((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
};
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
float get_element(const struct ggml_tensor * t, int idx) {
|
||||
return ((float *)t->data)[idx];
|
||||
}
|
||||
|
||||
void set_element(struct ggml_tensor * t, int idx, float value) {
|
||||
((float *)t->data)[idx] = value;
|
||||
}
|
||||
|
||||
bool check_gradient(
|
||||
const char * op_name,
|
||||
struct ggml_context * ctx0,
|
||||
struct ggml_tensor * x[],
|
||||
struct ggml_tensor * f,
|
||||
int ndims,
|
||||
int nargs,
|
||||
float eps,
|
||||
float max_error_abs,
|
||||
float max_error_rel) {
|
||||
|
||||
struct ggml_cgraph gf = ggml_build_forward (f);
|
||||
struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
|
||||
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
ggml_graph_reset (&gf);
|
||||
ggml_set_f32 (f->grad, 1.0f);
|
||||
ggml_graph_compute(ctx0, &gb);
|
||||
|
||||
ggml_graph_dump_dot(&gf, NULL, "test-grad0-forward.dot");
|
||||
ggml_graph_dump_dot(&gb, &gf, "test-grad0-backward.dot");
|
||||
|
||||
for (int i = 0; i < nargs; ++i) {
|
||||
const int nelements = ggml_nelements(x[i]);
|
||||
for (int k = 0; k < nelements; ++k) {
|
||||
// compute gradient using finite differences
|
||||
const float x0 = get_element(x[i], k);
|
||||
|
||||
set_element(x[i], k, x0 + eps);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
const float f0 = ggml_get_f32_1d(f, 0);
|
||||
|
||||
set_element(x[i], k, x0 - eps);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
const float f1 = ggml_get_f32_1d(f, 0);
|
||||
|
||||
const float g0 = (f0 - f1)/(2.0f*eps);
|
||||
|
||||
set_element(x[i], k, x0);
|
||||
|
||||
// compute gradient using backward graph
|
||||
ggml_graph_reset (&gf);
|
||||
ggml_set_f32 (f->grad, 1.0f);
|
||||
ggml_graph_compute(ctx0, &gb);
|
||||
|
||||
const float g1 = get_element(x[i]->grad, k);
|
||||
|
||||
const float error_abs = fabsf(g0 - g1);
|
||||
const float error_rel = g0 != 0 ? fabsf(g0 - g1)/fabs(g0) : 0;
|
||||
|
||||
if (error_abs > max_error_abs || error_rel > max_error_rel) {
|
||||
printf("%s: ndims=%d, i=%d, k=%d, g0=%f, g1=%f, error_abs=%f, error_rel=%f\n",
|
||||
op_name, ndims, i, k, g0, g1, error_abs, error_rel);
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
float mat_get(const struct ggml_tensor * t, int i0, int i1, int i2, int i3) {
|
||||
const size_t nb0 = t->nb[0];
|
||||
const size_t nb1 = t->nb[1];
|
||||
const size_t nb2 = t->nb[2];
|
||||
const size_t nb3 = t->nb[3];
|
||||
|
||||
return
|
||||
*((float*) ((char*)t->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3));
|
||||
}
|
||||
|
||||
bool check_mat_mul(
|
||||
const struct ggml_tensor * y,
|
||||
const struct ggml_tensor * x0,
|
||||
const struct ggml_tensor * x1) {
|
||||
float * dst = (float *) y->data;
|
||||
float * src0 = (float *) x0->data;
|
||||
float * src1 = (float *) x1->data;
|
||||
|
||||
const int n00 = x0->ne[0];
|
||||
const int n10 = x0->ne[1];
|
||||
const int n20 = x0->ne[2];
|
||||
const int n30 = x0->ne[3];
|
||||
|
||||
const int n01 = x1->ne[0];
|
||||
const int n11 = x1->ne[1];
|
||||
const int n21 = x1->ne[2];
|
||||
const int n31 = x1->ne[3];
|
||||
|
||||
const int n02 = y->ne[0];
|
||||
const int n12 = y->ne[1];
|
||||
const int n22 = y->ne[2];
|
||||
const int n32 = y->ne[3];
|
||||
|
||||
printf("x0: [%d, %d, %d, %d]\n", n00, n10, n20, n30);
|
||||
for (int j = 0; j < n10; ++j) {
|
||||
for (int i = 0; i < n00; ++i) {
|
||||
printf("%6.3f ", mat_get(x0, i, j, 0, 0));
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
printf("x1: [%d, %d, %d, %d]\n", n01, n11, n21, n31);
|
||||
for (int j = 0; j < n11; ++j) {
|
||||
for (int i = 0; i < n01; ++i) {
|
||||
printf("%6.3f ", mat_get(x1, i, j, 0, 0));
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
printf("y: [%d, %d, %d, %d]\n", n02, n12, n22, n32);
|
||||
for (int j = 0; j < n12; ++j) {
|
||||
for (int i = 0; i < n02; ++i) {
|
||||
printf("%6.3f ", mat_get(y, i, j, 0, 0));
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
for (int i3 = 0; i3 < n32; ++i3) {
|
||||
for (int i2 = 0; i2 < n22; ++i2) {
|
||||
for (int i1 = 0; i1 < n12; ++i1) {
|
||||
for (int i0 = 0; i0 < n02; ++i0) {
|
||||
float sum = 0.0f;
|
||||
for (int k = 0; k < n00; ++k) {
|
||||
sum += mat_get(x0, k, i0, i2, i3) * mat_get(x1, k, i1, i2, i3);
|
||||
}
|
||||
if (fabsf(sum - mat_get(y, i0, i1, i2, i3)) > 1e-5) {
|
||||
printf("error: i0=%d, i1=%d, i2=%d, i3=%d, sum=%f, y=%f\n",
|
||||
i0, i1, i2, i3, sum, mat_get(y, i0, i1, i2, i3));
|
||||
assert(false);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, const char ** argv) {
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = 128*1024*1024,
|
||||
.mem_buffer = NULL,
|
||||
};
|
||||
|
||||
int ne[4];
|
||||
|
||||
for (int iter = 0; iter < 500; ++iter) {
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
get_random_dims(ne, 4);
|
||||
|
||||
struct ggml_tensor * x[MAX_NARGS];
|
||||
|
||||
// mul_mat
|
||||
{
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
ne[1] = rand()%4 + 1;
|
||||
x[1] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
|
||||
ggml_set_param(ctx0, x[0]);
|
||||
|
||||
struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]);
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, m);
|
||||
|
||||
printf("testing: mul_mat, [%d, %d, %d, %d] = [%d, %d, %d, %d] * [%d, %d, %d, %d]\n",
|
||||
m->ne[0], m->ne[1], m->ne[2], m->ne[3],
|
||||
x[1]->ne[0], x[1]->ne[1], x[1]->ne[2], x[1]->ne[3],
|
||||
x[0]->ne[0], x[0]->ne[1], x[0]->ne[2], x[0]->ne[3]);
|
||||
|
||||
assert(m->ne[0] == x[1]->ne[1]);
|
||||
assert(m->ne[1] == x[0]->ne[1]);
|
||||
assert(m->ne[2] == x[0]->ne[2]);
|
||||
assert(m->ne[3] == x[0]->ne[3]);
|
||||
|
||||
if (ndims <= 2) {
|
||||
check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
|
||||
} else {
|
||||
struct ggml_cgraph gf = ggml_build_forward(m);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
}
|
||||
|
||||
check_mat_mul(m, x[1], x[0]);
|
||||
}
|
||||
}
|
||||
|
||||
// mul_mat (transposed)
|
||||
{
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 2; ndims <= 4; ++ndims) {
|
||||
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
ne[1] = ne[0];
|
||||
ne[0] = rand()%4 + 1;
|
||||
x[1] = ggml_transpose(ctx0, get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f));
|
||||
|
||||
ggml_set_param(ctx0, x[0]);
|
||||
|
||||
struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]);
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, m);
|
||||
|
||||
printf("testing: mul_mat, [%d, %d, %d, %d] = [%d, %d, %d, %d] * [%d, %d, %d, %d]\n",
|
||||
m->ne[0], m->ne[1], m->ne[2], m->ne[3],
|
||||
x[1]->ne[0], x[1]->ne[1], x[1]->ne[2], x[1]->ne[3],
|
||||
x[0]->ne[0], x[0]->ne[1], x[0]->ne[2], x[0]->ne[3]);
|
||||
|
||||
assert(m->ne[0] == x[1]->ne[1]);
|
||||
assert(m->ne[1] == x[0]->ne[1]);
|
||||
assert(m->ne[2] == x[0]->ne[2]);
|
||||
assert(m->ne[3] == x[0]->ne[3]);
|
||||
|
||||
if (ndims <= 2) {
|
||||
check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
|
||||
} else {
|
||||
struct ggml_cgraph gf = ggml_build_forward(m);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
}
|
||||
|
||||
check_mat_mul(m, x[1], x[0]);
|
||||
}
|
||||
}
|
||||
ggml_free(ctx0);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,124 @@
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
|
||||
const int N = 1 << 14;
|
||||
const int M = 1 << 14;
|
||||
|
||||
void mul_mat_vec_f32_0(
|
||||
const float * src0,
|
||||
const float * src1,
|
||||
float * dst,
|
||||
unsigned nrows,
|
||||
unsigned ncols) {
|
||||
for (unsigned i = 0; i < nrows; i++) {
|
||||
float sum = 0.0f;
|
||||
for (unsigned j = 0; j < ncols; j++) {
|
||||
sum += src0[i*ncols + j]*src1[j];
|
||||
}
|
||||
dst[i] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
typedef float afloat __attribute__ ((__aligned__(32)));
|
||||
void mul_mat_vec_f32_1(
|
||||
const afloat *restrict src0,
|
||||
const afloat *restrict src1,
|
||||
afloat *restrict dst,
|
||||
unsigned nrows,
|
||||
unsigned ncols) {
|
||||
for (unsigned i = 0; i < nrows; i++) {
|
||||
const afloat * restrict row = src0 + i*ncols;
|
||||
const afloat * restrict col = src1;
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
for (unsigned j = 0; j < ncols; j++) {
|
||||
sum += *row++ * *col++;
|
||||
}
|
||||
|
||||
dst[i] = sum;
|
||||
|
||||
//float sum[8] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
|
||||
|
||||
//for (unsigned j = 0; j < ncols; j += 8) {
|
||||
// sum[0] += row[0]*col[0];
|
||||
// sum[1] += row[1]*col[1];
|
||||
// sum[2] += row[2]*col[2];
|
||||
// sum[3] += row[3]*col[3];
|
||||
// sum[4] += row[4]*col[4];
|
||||
// sum[5] += row[5]*col[5];
|
||||
// sum[6] += row[6]*col[6];
|
||||
// sum[7] += row[7]*col[7];
|
||||
|
||||
// row += 8;
|
||||
// col += 8;
|
||||
//}
|
||||
|
||||
//dst[i] = sum[0] + sum[1] + sum[2] + sum[3] + sum[4] + sum[5] + sum[6] + sum[7];
|
||||
}
|
||||
}
|
||||
|
||||
void mul_mat_vec_f32_2(
|
||||
const void * src0,
|
||||
const void * src1,
|
||||
void * dst,
|
||||
unsigned nrows,
|
||||
unsigned ncols) {
|
||||
void * d = dst;
|
||||
for (unsigned i = 0; i < nrows; i++) {
|
||||
float sum = 0.0f;
|
||||
|
||||
const void * row = src0 + i*ncols*sizeof(float);
|
||||
const void * col = src1;
|
||||
for (unsigned j = 0; j < ncols; j++) {
|
||||
sum += (*(float *)row) * (*(float *)col);
|
||||
row += sizeof(float);
|
||||
col += sizeof(float);
|
||||
}
|
||||
*(float *)d = sum;
|
||||
d += sizeof(float);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, const char ** argv) {
|
||||
//float * src0 = (float *)malloc(sizeof(float)*N*M);
|
||||
//float * src1 = (float *)malloc(sizeof(float)*M);
|
||||
//float * dst = (float *)malloc(sizeof(float)*N);
|
||||
|
||||
afloat * src0 = (float *)(aligned_alloc(32, sizeof(float)*N*M));
|
||||
afloat * src1 = (float *)(aligned_alloc(32, sizeof(float)*M));
|
||||
afloat * dst = (float *)(aligned_alloc(32, sizeof(float)*N));
|
||||
|
||||
for (unsigned i = 0; i < N*M; i++) {
|
||||
src0[i] = i;
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < M; i++) {
|
||||
src1[i] = i;
|
||||
}
|
||||
|
||||
const int nIter = 10;
|
||||
|
||||
const clock_t start = clock();
|
||||
|
||||
double sum = 0.0f;
|
||||
for (int i = 0; i < nIter; i++) {
|
||||
//mul_mat_vec_f32_0(src0, src1, dst, N, M);
|
||||
mul_mat_vec_f32_1(src0, src1, dst, N, M);
|
||||
//mul_mat_vec_f32_2(src0, src1, dst, N, M);
|
||||
for (unsigned i = 0; i < N; i++) {
|
||||
sum += dst[i];
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
const clock_t end = clock();
|
||||
printf("%s: elapsed ticks: %ld\n", __func__, end - start);
|
||||
}
|
||||
|
||||
printf("%f\n", sum);
|
||||
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,546 @@
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
#include <math.h>
|
||||
|
||||
#include <sys/time.h>
|
||||
|
||||
#include <immintrin.h>
|
||||
|
||||
const int N = 1 << 14;
|
||||
const int M = 768;
|
||||
|
||||
//
|
||||
// naive implementation
|
||||
//
|
||||
|
||||
void mul_mat_vec_f32_0(
|
||||
const float * restrict src0,
|
||||
const float * restrict src1,
|
||||
float * dst,
|
||||
int nrows,
|
||||
int ncols) {
|
||||
for (int i = 0; i < nrows; i++) {
|
||||
float sum = 0.0f;
|
||||
for (int j = 0; j < ncols; j++) {
|
||||
sum += src0[i*ncols + j]*src1[j];
|
||||
}
|
||||
dst[i] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// SIMD with 8 32-bit floats
|
||||
//
|
||||
|
||||
float reduce_vector8_0(__m256 v) {
|
||||
__m128 v1 = _mm256_extractf128_ps(v, 0);
|
||||
__m128 v2 = _mm256_extractf128_ps(v, 1);
|
||||
__m128 v3 = _mm_add_ps(v1, v2);
|
||||
__m128 v4 = _mm_shuffle_ps(v3, v3, 0x4e);
|
||||
__m128 v5 = _mm_add_ps(v3, v4);
|
||||
__m128 v6 = _mm_shuffle_ps(v5, v5, 0x11);
|
||||
__m128 v7 = _mm_add_ps(v5, v6);
|
||||
return _mm_cvtss_f32(v7);
|
||||
}
|
||||
|
||||
// vectorized implementation using AVX
|
||||
void mul_mat_vec_f32_1(
|
||||
const float * restrict src0,
|
||||
const float * restrict src1,
|
||||
float * dst,
|
||||
int nrows,
|
||||
int ncols) {
|
||||
|
||||
const int ncols8 = ncols & ~7;
|
||||
|
||||
for (int i = 0; i < nrows; i++) {
|
||||
__m256 sum = _mm256_setzero_ps();
|
||||
for (int j = 0; j < ncols8; j += 8) {
|
||||
__m256 a = _mm256_loadu_ps(src0 + i*ncols + j);
|
||||
__m256 b = _mm256_loadu_ps(src1 + j);
|
||||
__m256 c = _mm256_mul_ps(a, b);
|
||||
sum = _mm256_add_ps(sum, c);
|
||||
}
|
||||
dst[i] = reduce_vector8_0(sum);
|
||||
|
||||
for (int j = ncols8; j < ncols; j++) {
|
||||
dst[i] += src0[i*ncols + j]*src1[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void mul_mat_vec_f32_2(
|
||||
const float * restrict src0,
|
||||
const float * restrict src1,
|
||||
float * dst,
|
||||
int nrows,
|
||||
int ncols) {
|
||||
|
||||
const int ncols32 = ncols & ~31;
|
||||
|
||||
for (int i = 0; i < nrows; i++) {
|
||||
__m256 sum0 = _mm256_setzero_ps();
|
||||
__m256 sum1 = _mm256_setzero_ps();
|
||||
__m256 sum2 = _mm256_setzero_ps();
|
||||
__m256 sum3 = _mm256_setzero_ps();
|
||||
|
||||
const float * restrict src0_row = src0 + i*ncols;
|
||||
for (int j = 0; j < ncols32; j += 32) {
|
||||
__m256 a0 = _mm256_loadu_ps(src0_row + j + 0);
|
||||
__m256 a1 = _mm256_loadu_ps(src0_row + j + 8);
|
||||
__m256 a2 = _mm256_loadu_ps(src0_row + j + 16);
|
||||
__m256 a3 = _mm256_loadu_ps(src0_row + j + 24);
|
||||
__m256 b0 = _mm256_loadu_ps(src1 + j + 0);
|
||||
__m256 b1 = _mm256_loadu_ps(src1 + j + 8);
|
||||
__m256 b2 = _mm256_loadu_ps(src1 + j + 16);
|
||||
__m256 b3 = _mm256_loadu_ps(src1 + j + 24);
|
||||
sum0 = _mm256_fmadd_ps(a0, b0, sum0);
|
||||
sum1 = _mm256_fmadd_ps(a1, b1, sum1);
|
||||
sum2 = _mm256_fmadd_ps(a2, b2, sum2);
|
||||
sum3 = _mm256_fmadd_ps(a3, b3, sum3);
|
||||
}
|
||||
dst[i] = reduce_vector8_0(_mm256_add_ps(_mm256_add_ps(sum0, sum1), _mm256_add_ps(sum2, sum3)));
|
||||
|
||||
for (int j = ncols32; j < ncols; j++) {
|
||||
dst[i] += src0[i*ncols + j]*src1[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// SIMD with 8 16-bit floats
|
||||
//
|
||||
|
||||
static inline float fp32_from_bits(uint32_t w) {
|
||||
#if defined(__OPENCL_VERSION__)
|
||||
return as_float(w);
|
||||
#elif defined(__CUDA_ARCH__)
|
||||
return __uint_as_float((unsigned int) w);
|
||||
#elif defined(__INTEL_COMPILER)
|
||||
return _castu32_f32(w);
|
||||
#elif defined(_MSC_VER) && (defined(_M_ARM) || defined(_M_ARM64))
|
||||
return _CopyFloatFromInt32((__int32) w);
|
||||
#else
|
||||
union {
|
||||
uint32_t as_bits;
|
||||
float as_value;
|
||||
} fp32 = { w };
|
||||
return fp32.as_value;
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline uint32_t fp32_to_bits(float f) {
|
||||
#if defined(__OPENCL_VERSION__)
|
||||
return as_uint(f);
|
||||
#elif defined(__CUDA_ARCH__)
|
||||
return (uint32_t) __float_as_uint(f);
|
||||
#elif defined(__INTEL_COMPILER)
|
||||
return _castf32_u32(f);
|
||||
#elif defined(_MSC_VER) && (defined(_M_ARM) || defined(_M_ARM64))
|
||||
return (uint32_t) _CopyInt32FromFloat(f);
|
||||
#else
|
||||
union {
|
||||
float as_value;
|
||||
uint32_t as_bits;
|
||||
} fp32 = { f };
|
||||
return fp32.as_bits;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert a 16-bit floating-point number in IEEE half-precision format, in bit representation, to
|
||||
* a 32-bit floating-point number in IEEE single-precision format.
|
||||
*
|
||||
* @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
|
||||
* floating-point operations and bitcasts between integer and floating-point variables.
|
||||
*/
|
||||
static inline float fp16_ieee_to_fp32_value(uint16_t h) {
|
||||
/*
|
||||
* Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word:
|
||||
* +---+-----+------------+-------------------+
|
||||
* | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
|
||||
* +---+-----+------------+-------------------+
|
||||
* Bits 31 26-30 16-25 0-15
|
||||
*
|
||||
* S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits.
|
||||
*/
|
||||
const uint32_t w = (uint32_t) h << 16;
|
||||
/*
|
||||
* Extract the sign of the input number into the high bit of the 32-bit word:
|
||||
*
|
||||
* +---+----------------------------------+
|
||||
* | S |0000000 00000000 00000000 00000000|
|
||||
* +---+----------------------------------+
|
||||
* Bits 31 0-31
|
||||
*/
|
||||
const uint32_t sign = w & UINT32_C(0x80000000);
|
||||
/*
|
||||
* Extract mantissa and biased exponent of the input number into the high bits of the 32-bit word:
|
||||
*
|
||||
* +-----+------------+---------------------+
|
||||
* |EEEEE|MM MMMM MMMM|0 0000 0000 0000 0000|
|
||||
* +-----+------------+---------------------+
|
||||
* Bits 27-31 17-26 0-16
|
||||
*/
|
||||
const uint32_t two_w = w + w;
|
||||
|
||||
/*
|
||||
* Shift mantissa and exponent into bits 23-28 and bits 13-22 so they become mantissa and exponent
|
||||
* of a single-precision floating-point number:
|
||||
*
|
||||
* S|Exponent | Mantissa
|
||||
* +-+---+-----+------------+----------------+
|
||||
* |0|000|EEEEE|MM MMMM MMMM|0 0000 0000 0000|
|
||||
* +-+---+-----+------------+----------------+
|
||||
* Bits | 23-31 | 0-22
|
||||
*
|
||||
* Next, there are some adjustments to the exponent:
|
||||
* - The exponent needs to be corrected by the difference in exponent bias between single-precision and half-precision
|
||||
* formats (0x7F - 0xF = 0x70)
|
||||
* - Inf and NaN values in the inputs should become Inf and NaN values after conversion to the single-precision number.
|
||||
* Therefore, if the biased exponent of the half-precision input was 0x1F (max possible value), the biased exponent
|
||||
* of the single-precision output must be 0xFF (max possible value). We do this correction in two steps:
|
||||
* - First, we adjust the exponent by (0xFF - 0x1F) = 0xE0 (see exp_offset below) rather than by 0x70 suggested
|
||||
* by the difference in the exponent bias (see above).
|
||||
* - Then we multiply the single-precision result of exponent adjustment by 2**(-112) to reverse the effect of
|
||||
* exponent adjustment by 0xE0 less the necessary exponent adjustment by 0x70 due to difference in exponent bias.
|
||||
* The floating-point multiplication hardware would ensure than Inf and NaN would retain their value on at least
|
||||
* partially IEEE754-compliant implementations.
|
||||
*
|
||||
* Note that the above operations do not handle denormal inputs (where biased exponent == 0). However, they also do not
|
||||
* operate on denormal inputs, and do not produce denormal results.
|
||||
*/
|
||||
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
|
||||
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
|
||||
const float exp_scale = 0x1.0p-112f;
|
||||
#else
|
||||
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
|
||||
#endif
|
||||
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
|
||||
|
||||
/*
|
||||
* Convert denormalized half-precision inputs into single-precision results (always normalized).
|
||||
* Zero inputs are also handled here.
|
||||
*
|
||||
* In a denormalized number the biased exponent is zero, and mantissa has on-zero bits.
|
||||
* First, we shift mantissa into bits 0-9 of the 32-bit word.
|
||||
*
|
||||
* zeros | mantissa
|
||||
* +---------------------------+------------+
|
||||
* |0000 0000 0000 0000 0000 00|MM MMMM MMMM|
|
||||
* +---------------------------+------------+
|
||||
* Bits 10-31 0-9
|
||||
*
|
||||
* Now, remember that denormalized half-precision numbers are represented as:
|
||||
* FP16 = mantissa * 2**(-24).
|
||||
* The trick is to construct a normalized single-precision number with the same mantissa and thehalf-precision input
|
||||
* and with an exponent which would scale the corresponding mantissa bits to 2**(-24).
|
||||
* A normalized single-precision floating-point number is represented as:
|
||||
* FP32 = (1 + mantissa * 2**(-23)) * 2**(exponent - 127)
|
||||
* Therefore, when the biased exponent is 126, a unit change in the mantissa of the input denormalized half-precision
|
||||
* number causes a change of the constructud single-precision number by 2**(-24), i.e. the same ammount.
|
||||
*
|
||||
* The last step is to adjust the bias of the constructed single-precision number. When the input half-precision number
|
||||
* is zero, the constructed single-precision number has the value of
|
||||
* FP32 = 1 * 2**(126 - 127) = 2**(-1) = 0.5
|
||||
* Therefore, we need to subtract 0.5 from the constructed single-precision number to get the numerical equivalent of
|
||||
* the input half-precision number.
|
||||
*/
|
||||
const uint32_t magic_mask = UINT32_C(126) << 23;
|
||||
const float magic_bias = 0.5f;
|
||||
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
|
||||
|
||||
/*
|
||||
* - Choose either results of conversion of input as a normalized number, or as a denormalized number, depending on the
|
||||
* input exponent. The variable two_w contains input exponent in bits 27-31, therefore if its smaller than 2**27, the
|
||||
* input is either a denormal number, or zero.
|
||||
* - Combine the result of conversion of exponent and mantissa with the sign of the input number.
|
||||
*/
|
||||
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
|
||||
const uint32_t result = sign |
|
||||
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
|
||||
return fp32_from_bits(result);
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert a 32-bit floating-point number in IEEE single-precision format to a 16-bit floating-point number in
|
||||
* IEEE half-precision format, in bit representation.
|
||||
*
|
||||
* @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
|
||||
* floating-point operations and bitcasts between integer and floating-point variables.
|
||||
*/
|
||||
static inline uint16_t fp16_ieee_from_fp32_value(float f) {
|
||||
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
|
||||
const float scale_to_inf = 0x1.0p+112f;
|
||||
const float scale_to_zero = 0x1.0p-110f;
|
||||
#else
|
||||
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
|
||||
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
|
||||
#endif
|
||||
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
|
||||
|
||||
const uint32_t w = fp32_to_bits(f);
|
||||
const uint32_t shl1_w = w + w;
|
||||
const uint32_t sign = w & UINT32_C(0x80000000);
|
||||
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
|
||||
if (bias < UINT32_C(0x71000000)) {
|
||||
bias = UINT32_C(0x71000000);
|
||||
}
|
||||
|
||||
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
|
||||
const uint32_t bits = fp32_to_bits(base);
|
||||
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
|
||||
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
|
||||
const uint32_t nonsign = exp_bits + mantissa_bits;
|
||||
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
|
||||
}
|
||||
|
||||
void mul_mat_vec_f16_0(
|
||||
const uint16_t * src0,
|
||||
const uint16_t * src1,
|
||||
float * dst,
|
||||
int nrows,
|
||||
int ncols) {
|
||||
|
||||
const int ncols8 = ncols & ~7;
|
||||
|
||||
for (int i = 0; i < nrows; i++) {
|
||||
__m256 sum = _mm256_setzero_ps();
|
||||
|
||||
const uint16_t * src0_row = src0 + i * ncols;
|
||||
for (int j = 0; j < ncols8; j += 8) {
|
||||
__m256 a = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j)));
|
||||
__m256 b = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j)));
|
||||
sum = _mm256_fmadd_ps(a, b, sum);
|
||||
}
|
||||
dst[i] = reduce_vector8_0(sum);
|
||||
|
||||
for (int j = ncols8; j < ncols; j++) {
|
||||
dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void mul_mat_vec_f16_1(
|
||||
const uint16_t * src0,
|
||||
const uint16_t * src1,
|
||||
float * dst,
|
||||
int nrows,
|
||||
int ncols) {
|
||||
|
||||
const int ncols16 = ncols & ~15;
|
||||
|
||||
for (int i = 0; i < nrows; i++) {
|
||||
__m256 sum0 = _mm256_setzero_ps();
|
||||
__m256 sum1 = _mm256_setzero_ps();
|
||||
|
||||
const uint16_t * src0_row = src0 + i * ncols;
|
||||
for (int j = 0; j < ncols16; j += 16) {
|
||||
__m256 a0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 0)));
|
||||
__m256 a1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 8)));
|
||||
__m256 b0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j)));
|
||||
__m256 b1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 8)));
|
||||
sum0 = _mm256_fmadd_ps(a0, b0, sum0);
|
||||
sum1 = _mm256_fmadd_ps(a1, b1, sum1);
|
||||
}
|
||||
dst[i] = reduce_vector8_0(sum0) + reduce_vector8_0(sum1);
|
||||
|
||||
for (int j = ncols16; j < ncols; j++) {
|
||||
dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void mul_mat_vec_f16_2(
|
||||
const uint16_t * src0,
|
||||
const uint16_t * src1,
|
||||
float * dst,
|
||||
int nrows,
|
||||
int ncols) {
|
||||
|
||||
const int ncols32 = ncols & ~31;
|
||||
|
||||
for (int i = 0; i < nrows; i++) {
|
||||
__m256 sum0 = _mm256_setzero_ps();
|
||||
__m256 sum1 = _mm256_setzero_ps();
|
||||
__m256 sum2 = _mm256_setzero_ps();
|
||||
__m256 sum3 = _mm256_setzero_ps();
|
||||
|
||||
const uint16_t * src0_row = src0 + i * ncols;
|
||||
for (int j = 0; j < ncols32; j += 32) {
|
||||
__m256 a0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 0)));
|
||||
__m256 a1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 8)));
|
||||
__m256 a2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 16)));
|
||||
__m256 a3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 24)));
|
||||
__m256 b0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j)));
|
||||
__m256 b1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 8)));
|
||||
__m256 b2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 16)));
|
||||
__m256 b3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 24)));
|
||||
sum0 = _mm256_fmadd_ps(a0, b0, sum0);
|
||||
sum1 = _mm256_fmadd_ps(a1, b1, sum1);
|
||||
sum2 = _mm256_fmadd_ps(a2, b2, sum2);
|
||||
sum3 = _mm256_fmadd_ps(a3, b3, sum3);
|
||||
}
|
||||
dst[i] = reduce_vector8_0(sum0) + reduce_vector8_0(sum1) + reduce_vector8_0(sum2) + reduce_vector8_0(sum3);
|
||||
|
||||
for (int j = ncols32; j < ncols; j++) {
|
||||
dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void mul_mat_vec_f16_3(
|
||||
const uint16_t * src0,
|
||||
const float * src1,
|
||||
float * dst,
|
||||
int nrows,
|
||||
int ncols) {
|
||||
|
||||
const int ncols32 = ncols & ~31;
|
||||
|
||||
for (int i = 0; i < nrows; i++) {
|
||||
__m256 sum0 = _mm256_setzero_ps();
|
||||
__m256 sum1 = _mm256_setzero_ps();
|
||||
__m256 sum2 = _mm256_setzero_ps();
|
||||
__m256 sum3 = _mm256_setzero_ps();
|
||||
|
||||
const uint16_t * src0_row = src0 + i * ncols;
|
||||
for (int j = 0; j < ncols32; j += 32) {
|
||||
__m256 a0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 0)));
|
||||
__m256 a1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 8)));
|
||||
__m256 a2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 16)));
|
||||
__m256 a3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 24)));
|
||||
__m256 b0 = _mm256_loadu_ps(src1 + j);
|
||||
__m256 b1 = _mm256_loadu_ps(src1 + j + 8);
|
||||
__m256 b2 = _mm256_loadu_ps(src1 + j + 16);
|
||||
__m256 b3 = _mm256_loadu_ps(src1 + j + 24);
|
||||
sum0 = _mm256_fmadd_ps(a0, b0, sum0);
|
||||
sum1 = _mm256_fmadd_ps(a1, b1, sum1);
|
||||
sum2 = _mm256_fmadd_ps(a2, b2, sum2);
|
||||
sum3 = _mm256_fmadd_ps(a3, b3, sum3);
|
||||
}
|
||||
dst[i] = reduce_vector8_0(sum0) + reduce_vector8_0(sum1) + reduce_vector8_0(sum2) + reduce_vector8_0(sum3);
|
||||
|
||||
for (int j = ncols32; j < ncols; j++) {
|
||||
dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t get_time_us() {
|
||||
struct timeval tv;
|
||||
gettimeofday(&tv, NULL);
|
||||
return tv.tv_sec * 1000000 + tv.tv_usec;
|
||||
}
|
||||
|
||||
int main(int argc, const char ** argv) {
|
||||
float * src0 = (float *)malloc(sizeof(float)*N*M);
|
||||
float * src1 = (float *)malloc(sizeof(float)*M);
|
||||
float * dst = (float *)malloc(sizeof(float)*N);
|
||||
|
||||
//float * src0 = (float *)(aligned_alloc(64, sizeof(float)*N*M));
|
||||
//float * src1 = (float *)(aligned_alloc(64, sizeof(float)*M));
|
||||
//float * dst = (float *)(aligned_alloc(64, sizeof(float)*N));
|
||||
|
||||
for (int i = 0; i < N*M; i++) {
|
||||
src0[i] = rand() / (float)RAND_MAX;
|
||||
}
|
||||
|
||||
for (int i = 0; i < M; i++) {
|
||||
src1[i] = rand() / (float)RAND_MAX;
|
||||
}
|
||||
|
||||
// convert src0 and src1 to __fp16
|
||||
uint16_t * src0_fp16 = (uint16_t *)(malloc(sizeof(uint16_t)*N*M));
|
||||
uint16_t * src1_fp16 = (uint16_t *)(malloc(sizeof(uint16_t)*M));
|
||||
//uint16_t * src0_fp16 = (uint16_t *)(aligned_alloc(64, sizeof(uint16_t)*N*M));
|
||||
//uint16_t * src1_fp16 = (uint16_t *)(aligned_alloc(64, sizeof(uint16_t)*M));
|
||||
|
||||
{
|
||||
const uint64_t t_start = get_time_us();
|
||||
|
||||
for (int i = 0; i < N*M; i++) {
|
||||
src0_fp16[i] = fp16_ieee_from_fp32_value(src0[i]);
|
||||
//printf("%f %f\n", src0[i], fp16_ieee_to_fp32_value(src0_fp16[i]));
|
||||
//assert(!isnan(fp16_ieee_to_fp32_value(src0_fp16[i])));
|
||||
}
|
||||
|
||||
for (int i = 0; i < M; i++) {
|
||||
src1_fp16[i] = fp16_ieee_from_fp32_value(src1[i]);
|
||||
}
|
||||
|
||||
const uint64_t t_end = get_time_us();
|
||||
printf("convert time: %f ms\n", (t_end - t_start) / 1000.0);
|
||||
}
|
||||
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
printf("%f %f\n", src0[i], fp16_ieee_to_fp32_value(src0_fp16[i]));
|
||||
}
|
||||
|
||||
int method = 0;
|
||||
if (argc > 1) {
|
||||
method = atoi(argv[1]);
|
||||
}
|
||||
|
||||
const int nIter = 1000;
|
||||
|
||||
const clock_t start = clock();
|
||||
const uint64_t start_us = get_time_us();
|
||||
|
||||
double iM = 1.0/M;
|
||||
double sum = 0.0f;
|
||||
for (int i = 0; i < nIter; i++) {
|
||||
if (method == 0) {
|
||||
mul_mat_vec_f32_0(src0, src1, dst, N, M);
|
||||
}
|
||||
|
||||
if (method == 1) {
|
||||
mul_mat_vec_f32_1(src0, src1, dst, N, M);
|
||||
}
|
||||
|
||||
if (method == 2) {
|
||||
mul_mat_vec_f32_2(src0, src1, dst, N, M);
|
||||
}
|
||||
|
||||
if (method == 3) {
|
||||
mul_mat_vec_f16_0(src0_fp16, src1_fp16, dst, N, M);
|
||||
}
|
||||
|
||||
if (method == 4) {
|
||||
mul_mat_vec_f16_1(src0_fp16, src1_fp16, dst, N, M);
|
||||
}
|
||||
|
||||
if (method == 5) {
|
||||
mul_mat_vec_f16_2(src0_fp16, src1_fp16, dst, N, M);
|
||||
}
|
||||
|
||||
if (method == 6) {
|
||||
mul_mat_vec_f16_3(src0_fp16, src1, dst, N, M);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < N; i++) {
|
||||
sum += dst[i]*iM;
|
||||
}
|
||||
|
||||
{
|
||||
const clock_t end = clock();
|
||||
const uint64_t end_us = get_time_us();
|
||||
printf("%s: elapsed ticks: %ld\n", __func__, end - start);
|
||||
printf("%s: elapsed us: %ld\n", __func__, end_us - start_us);
|
||||
}
|
||||
|
||||
printf("%f\n", sum);
|
||||
|
||||
free(src0);
|
||||
free(src1);
|
||||
free(dst);
|
||||
|
||||
free(src0_fp16);
|
||||
free(src1_fp16);
|
||||
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,200 @@
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
#include <math.h>
|
||||
|
||||
#include <sys/time.h>
|
||||
|
||||
#include <arm_neon.h>
|
||||
|
||||
const int N = 1 << 14;
|
||||
const int M = 768;
|
||||
|
||||
//
|
||||
// naive implementation
|
||||
//
|
||||
|
||||
void mul_mat_vec_f32_0(
|
||||
const float * restrict src0,
|
||||
const float * restrict src1,
|
||||
float * dst,
|
||||
int nrows,
|
||||
int ncols) {
|
||||
for (int i = 0; i < nrows; i++) {
|
||||
float sum = 0.0f;
|
||||
for (int j = 0; j < ncols; j++) {
|
||||
sum += src0[i*ncols + j]*src1[j];
|
||||
}
|
||||
dst[i] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
void mul_mat_vec_f16_0(
|
||||
const __fp16 * src0,
|
||||
const __fp16 * src1,
|
||||
float * dst,
|
||||
int nrows,
|
||||
int ncols) {
|
||||
|
||||
const int n64 = ncols & ~63;
|
||||
|
||||
for (int r = 0; r < nrows; r++) {
|
||||
float sumf = 0.0;
|
||||
|
||||
float16x8_t sum0 = vdupq_n_f16(0.0f);
|
||||
float16x8_t sum1 = vdupq_n_f16(0.0f);
|
||||
float16x8_t sum2 = vdupq_n_f16(0.0f);
|
||||
float16x8_t sum3 = vdupq_n_f16(0.0f);
|
||||
float16x8_t sum4 = vdupq_n_f16(0.0f);
|
||||
float16x8_t sum5 = vdupq_n_f16(0.0f);
|
||||
float16x8_t sum6 = vdupq_n_f16(0.0f);
|
||||
float16x8_t sum7 = vdupq_n_f16(0.0f);
|
||||
|
||||
float16x8_t x0, x1, x2, x3, x4, x5, x6, x7;
|
||||
float16x8_t y0, y1, y2, y3, y4, y5, y6, y7;
|
||||
|
||||
const __fp16 * restrict p0 = src0 + r*ncols;
|
||||
|
||||
for (int i = 0; i < n64; i += 64) {
|
||||
x0 = vld1q_f16(p0 + i + 0 );
|
||||
x1 = vld1q_f16(p0 + i + 8 );
|
||||
x2 = vld1q_f16(p0 + i + 16);
|
||||
x3 = vld1q_f16(p0 + i + 24);
|
||||
x4 = vld1q_f16(p0 + i + 32);
|
||||
x5 = vld1q_f16(p0 + i + 40);
|
||||
x6 = vld1q_f16(p0 + i + 48);
|
||||
x7 = vld1q_f16(p0 + i + 56);
|
||||
|
||||
y0 = vld1q_f16(src1 + i + 0 );
|
||||
y1 = vld1q_f16(src1 + i + 8 );
|
||||
y2 = vld1q_f16(src1 + i + 16);
|
||||
y3 = vld1q_f16(src1 + i + 24);
|
||||
y4 = vld1q_f16(src1 + i + 32);
|
||||
y5 = vld1q_f16(src1 + i + 40);
|
||||
y6 = vld1q_f16(src1 + i + 48);
|
||||
y7 = vld1q_f16(src1 + i + 56);
|
||||
|
||||
sum0 = vfmaq_f16(sum0, x0, y0);
|
||||
sum1 = vfmaq_f16(sum1, x1, y1);
|
||||
sum2 = vfmaq_f16(sum2, x2, y2);
|
||||
sum3 = vfmaq_f16(sum3, x3, y3);
|
||||
sum4 = vfmaq_f16(sum4, x4, y4);
|
||||
sum5 = vfmaq_f16(sum5, x5, y5);
|
||||
sum6 = vfmaq_f16(sum6, x6, y6);
|
||||
sum7 = vfmaq_f16(sum7, x7, y7);
|
||||
}
|
||||
|
||||
// TODO: F16 - better way to reduce this ?
|
||||
float16x8_t sum = vaddq_f16(sum0, sum1);
|
||||
|
||||
sum = vaddq_f16(sum, sum2);
|
||||
sum = vaddq_f16(sum, sum3);
|
||||
sum = vaddq_f16(sum, sum4);
|
||||
sum = vaddq_f16(sum, sum5);
|
||||
sum = vaddq_f16(sum, sum6);
|
||||
sum = vaddq_f16(sum, sum7);
|
||||
|
||||
sumf += sum[0] + sum[1] + sum[2] + sum[3] + sum[4] + sum[5] + sum[6] + sum[7];
|
||||
|
||||
for (int j = n64; j < n64; j++) {
|
||||
sumf += src0[r*ncols + j]*src1[j];
|
||||
}
|
||||
|
||||
dst[r] = sumf;
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t get_time_us() {
|
||||
struct timeval tv;
|
||||
gettimeofday(&tv, NULL);
|
||||
return tv.tv_sec * 1000000 + tv.tv_usec;
|
||||
}
|
||||
|
||||
int main(int argc, const char ** argv) {
|
||||
float * src0 = (float *)malloc(sizeof(float)*N*M);
|
||||
float * src1 = (float *)malloc(sizeof(float)*M);
|
||||
float * dst = (float *)malloc(sizeof(float)*N);
|
||||
|
||||
//float * src0 = (float *)(aligned_alloc(64, sizeof(float)*N*M));
|
||||
//float * src1 = (float *)(aligned_alloc(64, sizeof(float)*M));
|
||||
//float * dst = (float *)(aligned_alloc(64, sizeof(float)*N));
|
||||
|
||||
for (int i = 0; i < N*M; i++) {
|
||||
src0[i] = rand() / (float)RAND_MAX;
|
||||
}
|
||||
|
||||
for (int i = 0; i < M; i++) {
|
||||
src1[i] = rand() / (float)RAND_MAX;
|
||||
}
|
||||
|
||||
// convert src0 and src1 to __fp16
|
||||
__fp16 * src0_fp16 = (__fp16 *)(malloc(sizeof(__fp16)*N*M));
|
||||
__fp16 * src1_fp16 = (__fp16 *)(malloc(sizeof(__fp16)*M));
|
||||
|
||||
{
|
||||
const uint64_t t_start = get_time_us();
|
||||
|
||||
for (int i = 0; i < N*M; i++) {
|
||||
src0_fp16[i] = src0[i];
|
||||
//printf("%f %f\n", src0[i], src0_fp16[i]);
|
||||
//assert(!isnan(src0_fp16[i]));
|
||||
}
|
||||
|
||||
for (int i = 0; i < M; i++) {
|
||||
src1_fp16[i] = src1[i];
|
||||
}
|
||||
|
||||
const uint64_t t_end = get_time_us();
|
||||
printf("convert time: %f ms\n", (t_end - t_start) / 1000.0);
|
||||
}
|
||||
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
printf("%f %f\n", src0[i], src0_fp16[i]);
|
||||
}
|
||||
|
||||
int method = 0;
|
||||
if (argc > 1) {
|
||||
method = atoi(argv[1]);
|
||||
}
|
||||
|
||||
const int nIter = 1000;
|
||||
|
||||
const clock_t start = clock();
|
||||
const uint64_t start_us = get_time_us();
|
||||
|
||||
double iM = 1.0/M;
|
||||
double sum = 0.0f;
|
||||
for (int i = 0; i < nIter; i++) {
|
||||
if (method == 0) {
|
||||
mul_mat_vec_f32_0(src0, src1, dst, N, M);
|
||||
}
|
||||
|
||||
if (method == 1) {
|
||||
mul_mat_vec_f16_0(src0_fp16, src1_fp16, dst, N, M);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < N; i++) {
|
||||
sum += dst[i]*iM;
|
||||
}
|
||||
|
||||
{
|
||||
const clock_t end = clock();
|
||||
const uint64_t end_us = get_time_us();
|
||||
printf("%s: elapsed ticks: %ld\n", __func__, end - start);
|
||||
printf("%s: elapsed us: %llu\n", __func__, end_us - start_us);
|
||||
}
|
||||
|
||||
printf("%f\n", sum);
|
||||
|
||||
free(src0);
|
||||
free(src1);
|
||||
free(dst);
|
||||
|
||||
free(src0_fp16);
|
||||
free(src1_fp16);
|
||||
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,42 @@
|
||||
#include "ggml/ggml.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
|
||||
int main(int argc, const char ** argv) {
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = 128*1024*1024,
|
||||
.mem_buffer = NULL,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
struct ggml_tensor * t1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 10);
|
||||
struct ggml_tensor * t2 = ggml_new_tensor_2d(ctx0, GGML_TYPE_I16, 10, 20);
|
||||
struct ggml_tensor * t3 = ggml_new_tensor_3d(ctx0, GGML_TYPE_I32, 10, 20, 30);
|
||||
|
||||
assert(t1->n_dims == 1);
|
||||
assert(t1->ne[0] == 10);
|
||||
assert(t1->nb[1] == 10*sizeof(float));
|
||||
|
||||
assert(t2->n_dims == 2);
|
||||
assert(t2->ne[0] == 10);
|
||||
assert(t2->ne[1] == 20);
|
||||
assert(t2->nb[1] == 10*sizeof(int16_t));
|
||||
assert(t2->nb[2] == 10*20*sizeof(int16_t));
|
||||
|
||||
assert(t3->n_dims == 3);
|
||||
assert(t3->ne[0] == 10);
|
||||
assert(t3->ne[1] == 20);
|
||||
assert(t3->ne[2] == 30);
|
||||
assert(t3->nb[1] == 10*sizeof(int32_t));
|
||||
assert(t3->nb[2] == 10*20*sizeof(int32_t));
|
||||
assert(t3->nb[3] == 10*20*30*sizeof(int32_t));
|
||||
|
||||
ggml_print_objects(ctx0);
|
||||
|
||||
ggml_free(ctx0);
|
||||
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,436 @@
|
||||
#include "ggml/ggml.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
|
||||
int main(int argc, const char ** argv) {
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = 128*1024*1024,
|
||||
.mem_buffer = NULL,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
{
|
||||
struct ggml_tensor * x = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
|
||||
ggml_set_param(ctx0, x);
|
||||
|
||||
struct ggml_tensor * a = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
struct ggml_tensor * b = ggml_mul(ctx0, x, x);
|
||||
struct ggml_tensor * f = ggml_mul(ctx0, b, a);
|
||||
|
||||
// a*x^2
|
||||
// 2*a*x
|
||||
|
||||
ggml_print_objects(ctx0);
|
||||
|
||||
struct ggml_cgraph gf = ggml_build_forward(f);
|
||||
struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
|
||||
|
||||
ggml_set_f32(x, 2.0f);
|
||||
ggml_set_f32(a, 3.0f);
|
||||
|
||||
ggml_graph_reset(&gf);
|
||||
ggml_set_f32(f->grad, 1.0f);
|
||||
|
||||
ggml_graph_compute(ctx0, &gb);
|
||||
|
||||
printf("f = %f\n", ggml_get_f32_1d(f, 0));
|
||||
printf("df/dx = %f\n", ggml_get_f32_1d(x->grad, 0));
|
||||
|
||||
assert(ggml_get_f32_1d(f, 0) == 12.0f);
|
||||
assert(ggml_get_f32_1d(x->grad, 0) == 12.0f);
|
||||
|
||||
ggml_set_f32(x, 3.0f);
|
||||
|
||||
ggml_graph_reset(&gf);
|
||||
ggml_set_f32(f->grad, 1.0f);
|
||||
|
||||
ggml_graph_compute(ctx0, &gb);
|
||||
|
||||
printf("f = %f\n", ggml_get_f32_1d(f, 0));
|
||||
printf("df/dx = %f\n", ggml_get_f32_1d(x->grad, 0));
|
||||
|
||||
assert(ggml_get_f32_1d(f, 0) == 27.0f);
|
||||
assert(ggml_get_f32_1d(x->grad, 0) == 18.0f);
|
||||
|
||||
ggml_graph_dump_dot(&gf, NULL, "test1-1-forward.dot");
|
||||
ggml_graph_dump_dot(&gb, &gf, "test1-1-backward.dot");
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
{
|
||||
struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
struct ggml_tensor * x3 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
|
||||
ggml_set_f32(x1, 3.0f);
|
||||
ggml_set_f32(x2, 1.0f);
|
||||
ggml_set_f32(x3, 0.0f);
|
||||
|
||||
ggml_set_param(ctx0, x1);
|
||||
ggml_set_param(ctx0, x2);
|
||||
|
||||
struct ggml_tensor * y = ggml_add(ctx0, ggml_mul(ctx0, x1, x1), ggml_mul(ctx0, x1, x2));
|
||||
|
||||
struct ggml_cgraph gf = ggml_build_forward(y);
|
||||
struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
|
||||
|
||||
ggml_graph_reset(&gf);
|
||||
ggml_set_f32(y->grad, 1.0f);
|
||||
|
||||
ggml_graph_compute(ctx0, &gb);
|
||||
|
||||
printf("y = %f\n", ggml_get_f32_1d(y, 0));
|
||||
printf("df/dx1 = %f\n", ggml_get_f32_1d(x1->grad, 0));
|
||||
printf("df/dx2 = %f\n", ggml_get_f32_1d(x2->grad, 0));
|
||||
|
||||
assert(ggml_get_f32_1d(y, 0) == 12.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 0) == 7.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 0) == 3.0f);
|
||||
|
||||
struct ggml_tensor * g1 = x1->grad;
|
||||
struct ggml_tensor * g2 = x2->grad;
|
||||
|
||||
struct ggml_cgraph gbb = ggml_build_backward(ctx0, &gb, true);
|
||||
|
||||
ggml_graph_reset(&gb);
|
||||
ggml_set_f32(g1->grad, 1.0f);
|
||||
ggml_set_f32(g2->grad, 1.0f);
|
||||
|
||||
ggml_graph_compute(ctx0, &gbb);
|
||||
|
||||
printf("H * [1, 1] = [ %f %f ]\n", ggml_get_f32_1d(x1->grad, 0), ggml_get_f32_1d(x2->grad, 0));
|
||||
|
||||
assert(ggml_get_f32_1d(x1->grad, 0) == 3.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 0) == 1.0f);
|
||||
|
||||
ggml_graph_dump_dot(&gf, NULL, "test1-2-forward.dot");
|
||||
ggml_graph_dump_dot(&gb, &gf, "test1-2-backward.dot");
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
{
|
||||
struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
|
||||
ggml_set_param(ctx0, x1);
|
||||
ggml_set_param(ctx0, x2);
|
||||
|
||||
struct ggml_tensor * y = ggml_mul(ctx0, ggml_add(ctx0, ggml_mul(ctx0, x1, x1), ggml_mul(ctx0, x1, x2)), x1);
|
||||
|
||||
struct ggml_cgraph gf = ggml_build_forward(y);
|
||||
struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
|
||||
|
||||
ggml_set_f32(x1, 3.0f);
|
||||
ggml_set_f32(x2, 4.0f);
|
||||
|
||||
ggml_graph_reset(&gf);
|
||||
ggml_set_f32(y->grad, 1.0f);
|
||||
|
||||
ggml_graph_compute(ctx0, &gb);
|
||||
|
||||
printf("y = %f\n", ggml_get_f32_1d(y, 0));
|
||||
printf("df/dx1 = %f\n", ggml_get_f32_1d(x1->grad, 0));
|
||||
printf("df/dx2 = %f\n", ggml_get_f32_1d(x2->grad, 0));
|
||||
|
||||
assert(ggml_get_f32_1d(y, 0) == 63.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 0) == 51.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 0) == 9.0f);
|
||||
|
||||
ggml_graph_dump_dot(&gf, NULL, "test1-3-forward.dot");
|
||||
ggml_graph_dump_dot(&gb, &gf, "test1-3-backward.dot");
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
{
|
||||
struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
struct ggml_tensor * x3 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
|
||||
ggml_set_param(ctx0, x1);
|
||||
ggml_set_param(ctx0, x2);
|
||||
ggml_set_param(ctx0, x3);
|
||||
|
||||
struct ggml_tensor * y = ggml_mul(ctx0, ggml_mul(ctx0, ggml_mul(ctx0, x1, x1), ggml_mul(ctx0, x2, x2)), x3);
|
||||
|
||||
struct ggml_cgraph gf = ggml_build_forward(y);
|
||||
struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
|
||||
|
||||
ggml_set_f32(x1, 1.0f);
|
||||
ggml_set_f32(x2, 2.0f);
|
||||
ggml_set_f32(x3, 3.0f);
|
||||
|
||||
ggml_graph_reset(&gf);
|
||||
ggml_set_f32(y->grad, 1.0f);
|
||||
|
||||
ggml_graph_compute(ctx0, &gb);
|
||||
|
||||
printf("y = %f\n", ggml_get_f32_1d(y, 0));
|
||||
printf("df/dx1 = %f\n", ggml_get_f32_1d(x1->grad, 0));
|
||||
printf("df/dx2 = %f\n", ggml_get_f32_1d(x2->grad, 0));
|
||||
printf("df/dx3 = %f\n", ggml_get_f32_1d(x3->grad, 0));
|
||||
|
||||
assert(ggml_get_f32_1d(y, 0) == 12.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 0) == 24.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 0) == 12.0f);
|
||||
assert(ggml_get_f32_1d(x3->grad, 0) == 4.0f);
|
||||
|
||||
struct ggml_tensor * g1 = x1->grad;
|
||||
struct ggml_tensor * g2 = x2->grad;
|
||||
struct ggml_tensor * g3 = x3->grad;
|
||||
|
||||
struct ggml_cgraph gbb = ggml_build_backward(ctx0, &gb, true);
|
||||
|
||||
ggml_graph_reset(&gb);
|
||||
ggml_set_f32(g1->grad, 1.0f);
|
||||
ggml_set_f32(g2->grad, 1.0f);
|
||||
ggml_set_f32(g3->grad, 1.0f);
|
||||
|
||||
ggml_graph_compute(ctx0, &gbb);
|
||||
|
||||
printf("H * [1, 1, 1] = [ %f %f %f ]\n",
|
||||
ggml_get_f32_1d(x1->grad, 0),
|
||||
ggml_get_f32_1d(x2->grad, 0),
|
||||
ggml_get_f32_1d(x3->grad, 0));
|
||||
|
||||
assert(ggml_get_f32_1d(x1->grad, 0) == 56.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 0) == 34.0f);
|
||||
assert(ggml_get_f32_1d(x3->grad, 0) == 12.0f);
|
||||
|
||||
ggml_graph_dump_dot(&gf, NULL, "test1-4-forward.dot");
|
||||
ggml_graph_dump_dot(&gb, &gf, "test1-4-backward.dot");
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
{
|
||||
struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3);
|
||||
struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3);
|
||||
|
||||
ggml_set_param(ctx0, x1);
|
||||
ggml_set_param(ctx0, x2);
|
||||
|
||||
struct ggml_tensor * y = ggml_sum(ctx0, ggml_mul(ctx0, x1, x2));
|
||||
|
||||
struct ggml_cgraph gf = ggml_build_forward(y);
|
||||
struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
|
||||
|
||||
ggml_set_f32(x1, 3.0f);
|
||||
ggml_set_f32(x2, 5.0f);
|
||||
|
||||
ggml_graph_reset(&gf);
|
||||
ggml_set_f32(y->grad, 1.0f);
|
||||
|
||||
ggml_graph_compute(ctx0, &gb);
|
||||
|
||||
printf("y = %f\n", ggml_get_f32_1d(y, 0));
|
||||
printf("df/dx1 = %f %f %f\n",
|
||||
ggml_get_f32_1d(x1->grad, 0),
|
||||
ggml_get_f32_1d(x1->grad, 1),
|
||||
ggml_get_f32_1d(x1->grad, 2));
|
||||
printf("df/dx2 = %f %f %f\n",
|
||||
ggml_get_f32_1d(x2->grad, 0),
|
||||
ggml_get_f32_1d(x2->grad, 1),
|
||||
ggml_get_f32_1d(x2->grad, 2));
|
||||
|
||||
assert(ggml_get_f32_1d(y, 0) == 45.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 0) == 5.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 0) == 3.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 1) == 5.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 1) == 3.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 2) == 5.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 2) == 3.0f);
|
||||
|
||||
ggml_graph_dump_dot(&gf, NULL, "test1-5-forward.dot");
|
||||
ggml_graph_dump_dot(&gb, &gf, "test1-5-backward.dot");
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
{
|
||||
struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3);
|
||||
struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3);
|
||||
|
||||
ggml_set_param(ctx0, x1);
|
||||
ggml_set_param(ctx0, x2);
|
||||
|
||||
struct ggml_tensor * y =
|
||||
ggml_sum(ctx0,
|
||||
ggml_add(ctx0,
|
||||
ggml_mul(ctx0, x1, x2),
|
||||
ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, ggml_new_f32(ctx0, -2.0f), x1),
|
||||
ggml_mul(ctx0, x1, x1)
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
struct ggml_cgraph gf = ggml_build_forward(y);
|
||||
struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
|
||||
|
||||
ggml_set_f32(x1, 3.0f);
|
||||
ggml_set_f32(x2, 5.0f);
|
||||
|
||||
ggml_graph_reset(&gf);
|
||||
ggml_set_f32(y->grad, 1.0f);
|
||||
|
||||
ggml_graph_compute(ctx0, &gb);
|
||||
|
||||
printf("y = %f\n", ggml_get_f32_1d(y, 0));
|
||||
printf("df/dx1 = %f %f %f\n",
|
||||
ggml_get_f32_1d(x1->grad, 0),
|
||||
ggml_get_f32_1d(x1->grad, 1),
|
||||
ggml_get_f32_1d(x1->grad, 2));
|
||||
printf("df/dx2 = %f %f %f\n",
|
||||
ggml_get_f32_1d(x2->grad, 0),
|
||||
ggml_get_f32_1d(x2->grad, 1),
|
||||
ggml_get_f32_1d(x2->grad, 2));
|
||||
|
||||
assert(ggml_get_f32_1d(y, 0) == -9.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 0) == -7.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 1) == -7.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 2) == -7.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 0) == 3.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 1) == 3.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 2) == 3.0f);
|
||||
|
||||
ggml_graph_dump_dot(&gf, NULL, "test1-6-forward.dot");
|
||||
ggml_graph_dump_dot(&gb, &gf, "test1-6-backward.dot");
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
{
|
||||
struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3);
|
||||
struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3);
|
||||
|
||||
ggml_set_param(ctx0, x1);
|
||||
ggml_set_param(ctx0, x2);
|
||||
|
||||
struct ggml_tensor * y =
|
||||
ggml_sum(ctx0,
|
||||
ggml_sub(ctx0,
|
||||
ggml_mul(ctx0, x1, x2),
|
||||
ggml_mul(ctx0,
|
||||
ggml_mul(ctx0, x1, x1),
|
||||
ggml_repeat(ctx0, ggml_new_f32(ctx0, -2.0f), x1)
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
struct ggml_cgraph gf = ggml_build_forward(y);
|
||||
struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
|
||||
|
||||
ggml_set_f32(x1, 3.0f);
|
||||
ggml_set_f32(x2, 5.0f);
|
||||
|
||||
ggml_graph_reset(&gf);
|
||||
ggml_set_f32(y->grad, 1.0f);
|
||||
|
||||
ggml_graph_compute(ctx0, &gb);
|
||||
|
||||
printf("y = %f\n", ggml_get_f32_1d(y, 0));
|
||||
printf("df/dx1 = %f %f %f\n",
|
||||
ggml_get_f32_1d(x1->grad, 0),
|
||||
ggml_get_f32_1d(x1->grad, 1),
|
||||
ggml_get_f32_1d(x1->grad, 2));
|
||||
printf("df/dx2 = %f %f %f\n",
|
||||
ggml_get_f32_1d(x2->grad, 0),
|
||||
ggml_get_f32_1d(x2->grad, 1),
|
||||
ggml_get_f32_1d(x2->grad, 2));
|
||||
|
||||
assert(ggml_get_f32_1d(y, 0) == 99.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 0) == 17.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 1) == 17.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 2) == 17.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 0) == 3.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 1) == 3.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 2) == 3.0f);
|
||||
|
||||
ggml_graph_dump_dot(&gf, NULL, "test1-7-forward.dot");
|
||||
ggml_graph_dump_dot(&gb, &gf, "test1-7-backward.dot");
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
{
|
||||
struct ggml_tensor * x1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3);
|
||||
struct ggml_tensor * x2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 3);
|
||||
|
||||
ggml_set_param(ctx0, x1);
|
||||
ggml_set_param(ctx0, x2);
|
||||
|
||||
struct ggml_tensor * y =
|
||||
ggml_abs(ctx0,
|
||||
ggml_sub(ctx0, x1, x2)
|
||||
);
|
||||
|
||||
struct ggml_cgraph gf = ggml_build_forward(y);
|
||||
struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
|
||||
|
||||
ggml_set_f32(x1, 3.0f);
|
||||
ggml_set_f32(x2, 5.0f);
|
||||
|
||||
ggml_graph_reset(&gf);
|
||||
ggml_set_f32(y->grad, 1.0f);
|
||||
|
||||
ggml_graph_compute(ctx0, &gb);
|
||||
|
||||
printf("y = %f\n", ggml_get_f32_1d(y, 0));
|
||||
printf("df/dx1 = %f %f %f\n",
|
||||
ggml_get_f32_1d(x1->grad, 0),
|
||||
ggml_get_f32_1d(x1->grad, 1),
|
||||
ggml_get_f32_1d(x1->grad, 2));
|
||||
printf("df/dx2 = %f %f %f\n",
|
||||
ggml_get_f32_1d(x2->grad, 0),
|
||||
ggml_get_f32_1d(x2->grad, 1),
|
||||
ggml_get_f32_1d(x2->grad, 2));
|
||||
|
||||
assert(ggml_get_f32_1d(y, 0) == 2.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 0) == -1.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 1) == -1.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 2) == -1.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 0) == 1.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 1) == 1.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 2) == 1.0f);
|
||||
|
||||
ggml_set_f32(x1, 7.0f);
|
||||
ggml_set_f32(x2, 5.0f);
|
||||
|
||||
ggml_graph_reset(&gf);
|
||||
ggml_set_f32(y->grad, 1.0f);
|
||||
|
||||
ggml_graph_compute(ctx0, &gb);
|
||||
|
||||
printf("y = %f\n", ggml_get_f32_1d(y, 0));
|
||||
printf("df/dx1 = %f %f %f\n",
|
||||
ggml_get_f32_1d(x1->grad, 0),
|
||||
ggml_get_f32_1d(x1->grad, 1),
|
||||
ggml_get_f32_1d(x1->grad, 2));
|
||||
printf("df/dx2 = %f %f %f\n",
|
||||
ggml_get_f32_1d(x2->grad, 0),
|
||||
ggml_get_f32_1d(x2->grad, 1),
|
||||
ggml_get_f32_1d(x2->grad, 2));
|
||||
|
||||
assert(ggml_get_f32_1d(y, 0) == 2.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 0) == 1.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 1) == 1.0f);
|
||||
assert(ggml_get_f32_1d(x1->grad, 2) == 1.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 0) == -1.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 1) == -1.0f);
|
||||
assert(ggml_get_f32_1d(x2->grad, 2) == -1.0f);
|
||||
|
||||
ggml_graph_dump_dot(&gf, NULL, "test1-8-forward.dot");
|
||||
ggml_graph_dump_dot(&gb, &gf, "test1-8-backward.dot");
|
||||
}
|
||||
|
||||
ggml_free(ctx0);
|
||||
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,166 @@
|
||||
#include "ggml/ggml.h"
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
|
||||
bool is_close(float a, float b, float epsilon) {
|
||||
return fabs(a - b) < epsilon;
|
||||
}
|
||||
|
||||
int main(int argc, const char ** argv) {
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = 128*1024*1024,
|
||||
.mem_buffer = NULL,
|
||||
};
|
||||
|
||||
//struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_LBFGS);
|
||||
|
||||
struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
opt_params.adam.alpha = 0.01f;
|
||||
|
||||
opt_params.n_threads = (argc > 1) ? atoi(argv[1]) : 8;
|
||||
|
||||
const float xi[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f , 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, };
|
||||
float yi[] = { 15.0f, 25.0f, 35.0f, 45.0f, 55.0f, 65.0f, 75.0f, 85.0f, 95.0f, 105.0f, };
|
||||
|
||||
const int n = sizeof(xi)/sizeof(xi[0]);
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
struct ggml_tensor * x = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n);
|
||||
struct ggml_tensor * y = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n);
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
((float *) x->data)[i] = xi[i];
|
||||
((float *) y->data)[i] = yi[i];
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor * t0 = ggml_new_f32(ctx0, 0.0f);
|
||||
struct ggml_tensor * t1 = ggml_new_f32(ctx0, 0.0f);
|
||||
|
||||
// initialize auto-diff parameters:
|
||||
ggml_set_param(ctx0, t0);
|
||||
ggml_set_param(ctx0, t1);
|
||||
|
||||
// f = sum_i[(t0 + t1*x_i - y_i)^2]/(2n)
|
||||
struct ggml_tensor * f =
|
||||
ggml_div(ctx0,
|
||||
ggml_sum(ctx0,
|
||||
ggml_sqr(ctx0,
|
||||
ggml_sub(ctx0,
|
||||
ggml_add(ctx0,
|
||||
ggml_mul(ctx0, x, ggml_repeat(ctx0, t1, x)),
|
||||
ggml_repeat(ctx0, t0, x)),
|
||||
y)
|
||||
)
|
||||
),
|
||||
ggml_new_f32(ctx0, 2.0f*n));
|
||||
|
||||
enum ggml_opt_result res = ggml_opt(NULL, opt_params, f);
|
||||
|
||||
assert(res == GGML_OPT_OK);
|
||||
|
||||
printf("t0 = %f\n", ggml_get_f32_1d(t0, 0));
|
||||
printf("t1 = %f\n", ggml_get_f32_1d(t1, 0));
|
||||
|
||||
assert(is_close(ggml_get_f32_1d(t0, 0), 5.0f, 1e-3f));
|
||||
assert(is_close(ggml_get_f32_1d(t1, 0), 10.0f, 1e-3f));
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor * t0 = ggml_new_f32(ctx0, -1.0f);
|
||||
struct ggml_tensor * t1 = ggml_new_f32(ctx0, 9.0f);
|
||||
|
||||
ggml_set_param(ctx0, t0);
|
||||
ggml_set_param(ctx0, t1);
|
||||
|
||||
// f = 0.5*sum_i[abs(t0 + t1*x_i - y_i)]/n
|
||||
struct ggml_tensor * f =
|
||||
ggml_mul(ctx0,
|
||||
ggml_new_f32(ctx0, 1.0/(2*n)),
|
||||
ggml_sum(ctx0,
|
||||
ggml_abs(ctx0,
|
||||
ggml_sub(ctx0,
|
||||
ggml_add(ctx0,
|
||||
ggml_mul(ctx0, x, ggml_repeat(ctx0, t1, x)),
|
||||
ggml_repeat(ctx0, t0, x)),
|
||||
y)
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
enum ggml_opt_result res = ggml_opt(NULL, opt_params, f);
|
||||
|
||||
assert(res == GGML_OPT_OK);
|
||||
assert(is_close(ggml_get_f32_1d(t0, 0), 5.0f, 1e-3f));
|
||||
assert(is_close(ggml_get_f32_1d(t1, 0), 10.0f, 1e-3f));
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor * t0 = ggml_new_f32(ctx0, 5.0f);
|
||||
struct ggml_tensor * t1 = ggml_new_f32(ctx0, -4.0f);
|
||||
|
||||
ggml_set_param(ctx0, t0);
|
||||
ggml_set_param(ctx0, t1);
|
||||
|
||||
// f = t0^2 + t1^2
|
||||
struct ggml_tensor * f =
|
||||
ggml_add(ctx0,
|
||||
ggml_sqr(ctx0, t0),
|
||||
ggml_sqr(ctx0, t1)
|
||||
);
|
||||
|
||||
enum ggml_opt_result res = ggml_opt(NULL, opt_params, f);
|
||||
|
||||
assert(res == GGML_OPT_OK);
|
||||
assert(is_close(ggml_get_f32_1d(f, 0), 0.0f, 1e-3f));
|
||||
assert(is_close(ggml_get_f32_1d(t0, 0), 0.0f, 1e-3f));
|
||||
assert(is_close(ggml_get_f32_1d(t1, 0), 0.0f, 1e-3f));
|
||||
}
|
||||
|
||||
/////////////////////////////////////////
|
||||
|
||||
{
|
||||
struct ggml_tensor * t0 = ggml_new_f32(ctx0, -7.0f);
|
||||
struct ggml_tensor * t1 = ggml_new_f32(ctx0, 8.0f);
|
||||
|
||||
ggml_set_param(ctx0, t0);
|
||||
ggml_set_param(ctx0, t1);
|
||||
|
||||
// f = (t0 + 2*t1 - 7)^2 + (2*t0 + t1 - 5)^2
|
||||
struct ggml_tensor * f =
|
||||
ggml_add(ctx0,
|
||||
ggml_sqr(ctx0,
|
||||
ggml_sub(ctx0,
|
||||
ggml_add(ctx0,
|
||||
t0,
|
||||
ggml_mul(ctx0, t1, ggml_new_f32(ctx0, 2.0f))),
|
||||
ggml_new_f32(ctx0, 7.0f)
|
||||
)
|
||||
),
|
||||
ggml_sqr(ctx0,
|
||||
ggml_sub(ctx0,
|
||||
ggml_add(ctx0,
|
||||
ggml_mul(ctx0, t0, ggml_new_f32(ctx0, 2.0f)),
|
||||
t1),
|
||||
ggml_new_f32(ctx0, 5.0f)
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
enum ggml_opt_result res = ggml_opt(NULL, opt_params, f);
|
||||
|
||||
assert(res == GGML_OPT_OK);
|
||||
assert(is_close(ggml_get_f32_1d(f, 0), 0.0f, 1e-3f));
|
||||
assert(is_close(ggml_get_f32_1d(t0, 0), 1.0f, 1e-3f));
|
||||
assert(is_close(ggml_get_f32_1d(t1, 0), 3.0f, 1e-3f));
|
||||
}
|
||||
|
||||
ggml_free(ctx0);
|
||||
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,95 @@
|
||||
#include "ggml/ggml.h"
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
|
||||
bool is_close(float a, float b, float epsilon) {
|
||||
return fabs(a - b) < epsilon;
|
||||
}
|
||||
|
||||
int main(int argc, const char ** argv) {
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = 1024*1024*1024,
|
||||
.mem_buffer = NULL,
|
||||
};
|
||||
|
||||
struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_LBFGS);
|
||||
//struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
|
||||
opt_params.n_threads = (argc > 1) ? atoi(argv[1]) : 8;
|
||||
|
||||
const int NP = 1 << 12;
|
||||
const int NF = 1 << 8;
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
struct ggml_tensor * F = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, NF, NP);
|
||||
struct ggml_tensor * l = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, NP);
|
||||
|
||||
// regularization weight
|
||||
struct ggml_tensor * lambda = ggml_new_f32(ctx0, 1e-5f);
|
||||
|
||||
srand(0);
|
||||
|
||||
for (int j = 0; j < NP; j++) {
|
||||
const float ll = j < NP/2 ? 1.0f : -1.0f;
|
||||
((float *)l->data)[j] = ll;
|
||||
|
||||
for (int i = 0; i < NF; i++) {
|
||||
((float *)F->data)[j*NF + i] = ((ll > 0 && i < NF/2 ? 1.0f : ll < 0 && i >= NF/2 ? 1.0f : 0.0f) + ((float)rand()/(float)RAND_MAX - 0.5f)*0.1f)/(0.5f*NF);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
// initial guess
|
||||
struct ggml_tensor * x = ggml_set_f32(ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, NF), 0.0f);
|
||||
|
||||
ggml_set_param(ctx0, x);
|
||||
|
||||
// f = sum[(fj*x - l)^2]/n + lambda*|x^2|
|
||||
struct ggml_tensor * f =
|
||||
ggml_add(ctx0,
|
||||
ggml_div(ctx0,
|
||||
ggml_sum(ctx0,
|
||||
ggml_sqr(ctx0,
|
||||
ggml_sub(ctx0,
|
||||
ggml_mul_mat(ctx0, F, x),
|
||||
l)
|
||||
)
|
||||
),
|
||||
ggml_new_f32(ctx0, NP)
|
||||
),
|
||||
ggml_mul(ctx0,
|
||||
ggml_sum(ctx0, ggml_sqr(ctx0, x)),
|
||||
lambda)
|
||||
);
|
||||
|
||||
enum ggml_opt_result res = ggml_opt(NULL, opt_params, f);
|
||||
|
||||
assert(res == GGML_OPT_OK);
|
||||
|
||||
// print results
|
||||
for (int i = 0; i < 16; i++) {
|
||||
printf("x[%3d] = %g\n", i, ((float *)x->data)[i]);
|
||||
}
|
||||
printf("...\n");
|
||||
for (int i = NF - 16; i < NF; i++) {
|
||||
printf("x[%3d] = %g\n", i, ((float *)x->data)[i]);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
for (int i = 0; i < NF; ++i) {
|
||||
if (i < NF/2) {
|
||||
assert(is_close(((float *)x->data)[i], 1.0f, 1e-2f));
|
||||
} else {
|
||||
assert(is_close(((float *)x->data)[i], -1.0f, 1e-2f));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ggml_free(ctx0);
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in new issue