sync : latest changes from whisper.cpp

pull/12/head
Georgi Gerganov 2 years ago
parent 624e4f5313
commit 6feeca262f
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735

@ -13,7 +13,9 @@ Tensor library for machine learning
- No third-party dependencies - No third-party dependencies
- Zero memory allocations during runtime - Zero memory allocations during runtime
*Note that this project is under development and not ready for production use* ***Note that this project is under development and not ready for production use.
More active development is happening in the ***[whisper.cpp](https://github.com/ggerganov/whisper.cpp) ***repo
so if you are interested in this project, make sure to follow what is happening there***
## Whisper inference (example) ## Whisper inference (example)

@ -5,15 +5,23 @@
#define DR_WAV_IMPLEMENTATION #define DR_WAV_IMPLEMENTATION
#include "dr_wav.h" #include "dr_wav.h"
#include <cmath>
#include <fstream> #include <fstream>
#include <cstdio> #include <cstdio>
#include <string> #include <string>
#include <thread> #include <thread>
#include <vector> #include <vector>
// Terminal color map. 10 colors grouped in ranges [0.0, 0.1, ..., 0.9]
// Lowest is red, middle is yellow, highest is green.
const std::vector<std::string> k_colors = {
"\033[38;5;196m", "\033[38;5;202m", "\033[38;5;208m", "\033[38;5;214m", "\033[38;5;220m",
"\033[38;5;226m", "\033[38;5;190m", "\033[38;5;154m", "\033[38;5;118m", "\033[38;5;82m",
};
// 500 -> 00:05.000 // 500 -> 00:05.000
// 6000 -> 01:00.000 // 6000 -> 01:00.000
std::string to_timestamp(int64_t t) { std::string to_timestamp(int64_t t, bool comma = false) {
int64_t msec = t * 10; int64_t msec = t * 10;
int64_t hr = msec / (1000 * 60 * 60); int64_t hr = msec / (1000 * 60 * 60);
msec = msec - hr * (1000 * 60 * 60); msec = msec - hr * (1000 * 60 * 60);
@ -23,23 +31,64 @@ std::string to_timestamp(int64_t t) {
msec = msec - sec * 1000; msec = msec - sec * 1000;
char buf[32]; char buf[32];
snprintf(buf, sizeof(buf), "%02d:%02d:%02d.%03d", (int) hr, (int) min, (int) sec, (int) msec); snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
return std::string(buf); return std::string(buf);
} }
void replace_all(std::string & s, const std::string & search, const std::string & replace) {
for (size_t pos = 0; ; pos += replace.length()) {
pos = s.find(search, pos);
if (pos == std::string::npos) break;
s.erase(pos, search.length());
s.insert(pos, replace);
}
}
// a cost-function that is high for text that takes longer to pronounce
float voice_length(const std::string & text) {
float res = 0.0f;
for (size_t i = 0; i < text.size(); ++i) {
if (text[i] == ' ') {
res += 0.01f;
} else if (text[i] == ',') {
res += 2.00f;
} else if (text[i] == '.') {
res += 3.00f;
} else if (text[i] == '!') {
res += 3.00f;
} else if (text[i] == '?') {
res += 3.00f;
} else if (text[i] >= '0' && text[i] <= '9') {
res += 3.00f;
} else {
res += 1.00f;
}
}
return res;
}
// command-line parameters // command-line parameters
struct whisper_params { struct whisper_params {
int32_t seed = -1; // RNG seed, not used currently int32_t seed = -1; // RNG seed, not used currently
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t offset_ms = 0; int32_t n_processors = 1;
int32_t offset_t_ms = 0;
int32_t offset_n = 0;
int32_t max_context = -1;
float word_thold = 0.01f;
bool verbose = false; bool verbose = false;
bool translate = false; bool translate = false;
bool output_txt = false; bool output_txt = false;
bool output_vtt = false; bool output_vtt = false;
bool output_srt = false; bool output_srt = false;
bool output_wts = false;
bool print_special_tokens = false; bool print_special_tokens = false;
bool print_colors = false;
bool no_timestamps = false; bool no_timestamps = false;
std::string language = "en"; std::string language = "en";
@ -63,8 +112,16 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
params.seed = std::stoi(argv[++i]); params.seed = std::stoi(argv[++i]);
} else if (arg == "-t" || arg == "--threads") { } else if (arg == "-t" || arg == "--threads") {
params.n_threads = std::stoi(argv[++i]); params.n_threads = std::stoi(argv[++i]);
} else if (arg == "-o" || arg == "--offset") { } else if (arg == "-p" || arg == "--processors") {
params.offset_ms = std::stoi(argv[++i]); params.n_processors = std::stoi(argv[++i]);
} else if (arg == "-ot" || arg == "--offset-t") {
params.offset_t_ms = std::stoi(argv[++i]);
} else if (arg == "-on" || arg == "--offset-n") {
params.offset_n = std::stoi(argv[++i]);
} else if (arg == "-mc" || arg == "--max-context") {
params.max_context = std::stoi(argv[++i]);
} else if (arg == "-wt" || arg == "--word-thold") {
params.word_thold = std::stof(argv[++i]);
} else if (arg == "-v" || arg == "--verbose") { } else if (arg == "-v" || arg == "--verbose") {
params.verbose = true; params.verbose = true;
} else if (arg == "--translate") { } else if (arg == "--translate") {
@ -82,8 +139,12 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
params.output_vtt = true; params.output_vtt = true;
} else if (arg == "-osrt" || arg == "--output-srt") { } else if (arg == "-osrt" || arg == "--output-srt") {
params.output_srt = true; params.output_srt = true;
} else if (arg == "-owts" || arg == "--output-words") {
params.output_wts = true;
} else if (arg == "-ps" || arg == "--print_special") { } else if (arg == "-ps" || arg == "--print_special") {
params.print_special_tokens = true; params.print_special_tokens = true;
} else if (arg == "-pc" || arg == "--print_colors") {
params.print_colors = true;
} else if (arg == "-nt" || arg == "--no_timestamps") { } else if (arg == "-nt" || arg == "--no_timestamps") {
params.no_timestamps = true; params.no_timestamps = true;
} else if (arg == "-m" || arg == "--model") { } else if (arg == "-m" || arg == "--model") {
@ -111,13 +172,19 @@ void whisper_print_usage(int argc, char ** argv, const whisper_params & params)
fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -o N, --offset N offset in milliseconds (default: %d)\n", params.offset_ms); fprintf(stderr, " -p N, --processors N number of processors to use during computation (default: %d)\n", params.n_processors);
fprintf(stderr, " -ot N, --offset-t N time offset in milliseconds (default: %d)\n", params.offset_t_ms);
fprintf(stderr, " -on N, --offset-n N segment index offset (default: %d)\n", params.offset_n);
fprintf(stderr, " -mc N, --max-context N maximum number of text context tokens to store (default: max)\n");
fprintf(stderr, " -wt N, --word-thold N word timestamp probability threshold (default: %f)\n", params.word_thold);
fprintf(stderr, " -v, --verbose verbose output\n"); fprintf(stderr, " -v, --verbose verbose output\n");
fprintf(stderr, " --translate translate from source language to english\n"); fprintf(stderr, " --translate translate from source language to english\n");
fprintf(stderr, " -otxt, --output-txt output result in a text file\n"); fprintf(stderr, " -otxt, --output-txt output result in a text file\n");
fprintf(stderr, " -ovtt, --output-vtt output result in a vtt file\n"); fprintf(stderr, " -ovtt, --output-vtt output result in a vtt file\n");
fprintf(stderr, " -osrt, --output-srt output result in a srt file\n"); fprintf(stderr, " -osrt, --output-srt output result in a srt file\n");
fprintf(stderr, " -owts, --output-words output word-level timestamps to a text file\n");
fprintf(stderr, " -ps, --print_special print special tokens\n"); fprintf(stderr, " -ps, --print_special print special tokens\n");
fprintf(stderr, " -pc, --print_colors print colors\n");
fprintf(stderr, " -nt, --no_timestamps do not print timestamps\n"); fprintf(stderr, " -nt, --no_timestamps do not print timestamps\n");
fprintf(stderr, " -l LANG, --language LANG spoken language (default: %s)\n", params.language.c_str()); fprintf(stderr, " -l LANG, --language LANG spoken language (default: %s)\n", params.language.c_str());
fprintf(stderr, " -m FNAME, --model FNAME model path (default: %s)\n", params.model.c_str()); fprintf(stderr, " -m FNAME, --model FNAME model path (default: %s)\n", params.model.c_str());
@ -125,6 +192,505 @@ void whisper_print_usage(int argc, char ** argv, const whisper_params & params)
fprintf(stderr, "\n"); fprintf(stderr, "\n");
} }
void whisper_print_segment_callback(struct whisper_context * ctx, void * user_data) {
const whisper_params & params = *(whisper_params *) user_data;
const int n_segments = whisper_full_n_segments(ctx);
// print the last segment
const int i = n_segments - 1;
if (i == 0) {
printf("\n");
}
if (params.no_timestamps) {
if (params.print_colors) {
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
if (params.print_special_tokens == false) {
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
if (id >= whisper_token_eot(ctx)) {
continue;
}
}
const char * text = whisper_full_get_token_text(ctx, i, j);
const float p = whisper_full_get_token_p (ctx, i, j);
const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
}
} else {
const char * text = whisper_full_get_segment_text(ctx, i);
printf("%s", text);
}
fflush(stdout);
} else {
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
if (params.print_colors) {
printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
if (params.print_special_tokens == false) {
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
if (id >= whisper_token_eot(ctx)) {
continue;
}
}
const char * text = whisper_full_get_token_text(ctx, i, j);
const float p = whisper_full_get_token_p (ctx, i, j);
const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
}
printf("\n");
} else {
const char * text = whisper_full_get_segment_text(ctx, i);
printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text);
}
}
}
bool output_txt(struct whisper_context * ctx, const char * fname) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
return false;
}
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
fout << text;
}
return true;
}
bool output_vtt(struct whisper_context * ctx, const char * fname) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
return 9;
}
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
fout << "WEBVTT\n\n";
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
fout << to_timestamp(t0) << " --> " << to_timestamp(t1) << "\n";
fout << text << "\n\n";
}
return true;
}
bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_params & params) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
return false;
}
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
fout << i + 1 + params.offset_n << "\n";
fout << to_timestamp(t0, true) << " --> " << to_timestamp(t1, true) << "\n";
fout << text << "\n\n";
}
return true;
}
// word-level timestamps (experimental)
// TODO: probably still has bugs, needs refactoring, etc..
// TODO: auto threshold
// TODO: extra pass to detect unused speech and assign to tokens
// TODO: font parameter adjustments
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, const std::vector<float> & pcmf32) {
if (params.output_wts) {
std::vector<float> pcm_avg(pcmf32.size(), 0);
// average the fabs of the signal
{
const int hw = 32;
for (int i = 0; i < pcmf32.size(); i++) {
float sum = 0;
for (int j = -hw; j <= hw; j++) {
if (i + j >= 0 && i + j < pcmf32.size()) {
sum += fabs(pcmf32[i + j]);
}
}
pcm_avg[i] = sum/(2*hw + 1);
}
}
struct token_info {
int64_t t0 = -1;
int64_t t1 = -1;
int64_t tt0 = -1;
int64_t tt1 = -1;
whisper_token id;
whisper_token tid;
float p = 0.0f;
float pt = 0.0f;
float ptsum = 0.0f;
std::string text;
float vlen = 0.0f; // voice length of this token
};
int64_t t_beg = 0;
int64_t t_last = 0;
whisper_token tid_last = 0;
std::ofstream fout(fname);
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
fout << "!/bin/bash" << "\n";
fout << "\n";
fout << "ffmpeg -i " << fname_inp << " -f lavfi -i color=size=1200x120:duration=" << float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE << ":rate=25:color=black -vf \"";
bool is_first = true;
for (int i = 0; i < whisper_full_n_segments(ctx); i++) {
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
const char *text = whisper_full_get_segment_text(ctx, i);
const int s0 = std::max(0, (int) (t0*WHISPER_SAMPLE_RATE/100));
const int s1 = std::min((int) pcmf32.size(), (int) (t1*WHISPER_SAMPLE_RATE/100));
const int n = whisper_full_n_tokens(ctx, i);
std::vector<token_info> tokens(n);
if (n <= 1) {
continue;
}
for (int j = 0; j < n; ++j) {
struct whisper_token_data token = whisper_full_get_token_data(ctx, i, j);
if (j == 0) {
if (token.id == whisper_token_beg(ctx)) {
tokens[j ].t0 = t0;
tokens[j ].t1 = t0;
tokens[j + 1].t0 = t0;
t_beg = t0;
t_last = t0;
tid_last = whisper_token_beg(ctx);
} else {
tokens[j ].t0 = t_last;
}
}
const int64_t tt = t_beg + 2*(token.tid - whisper_token_beg(ctx));
tokens[j].id = token.id;
tokens[j].tid = token.tid;
tokens[j].p = token.p;
tokens[j].pt = token.pt;
tokens[j].ptsum = token.ptsum;
tokens[j].text = whisper_token_to_str(ctx, token.id);
//tokens[j].vlen = tokens[j].pt;
tokens[j].vlen = voice_length(tokens[j].text);
if (token.pt > params.word_thold && token.ptsum > 0.01 && token.tid > tid_last && tt <= t1) {
if (j > 0) {
tokens[j - 1].t1 = tt;
}
tokens[j].t0 = tt;
tid_last = token.tid;
}
}
tokens[n - 2].t1 = t1;
tokens[n - 1].t0 = t1;
tokens[n - 1].t1 = t1;
t_last = t1;
int p0 = 0;
int p1 = 0;
while (true) {
while (p1 < n && tokens[p1].t1 < 0) {
p1++;
}
if (p1 >= n) {
p1--;
}
if (p1 > p0) {
double psum = 0.0;
for (int j = p0; j <= p1; j++) {
psum += tokens[j].vlen;
}
//printf("analyzing %d - %d, psum = %f\n", p0, p1, psum);
const double dt = tokens[p1].t1 - tokens[p0].t0;
for (int j = p0 + 1; j <= p1; j++) {
const double ct = tokens[j - 1].t0 + dt*tokens[j - 1].vlen/psum;
//const double ct = tokens[j - 1].t0 + (dt*(j - p0))/(p1 - p0 + 1);
//const double ct = tokens[p0].t0 + (dt*(j - p0))/(p1 - p0 + 1);
tokens[j - 1].t1 = ct;
tokens[j ].t0 = ct;
}
}
p1++;
p0 = p1;
if (p1 >= n) {
break;
}
}
for (int j = 0; j < n - 1; j++) {
if (tokens[j].t1 < 0) {
tokens[j + 1].t0 = tokens[j].t1;
}
if (j > 0) {
if (tokens[j - 1].t1 > tokens[j].t0) {
tokens[j].t0 = tokens[j - 1].t1;
tokens[j].t1 = std::max(tokens[j].t0, tokens[j].t1);
}
}
tokens[j].tt0 = tokens[j].t0;
tokens[j].tt1 = tokens[j].t1;
}
// VAD
{
const int hw = WHISPER_SAMPLE_RATE/8;
for (int j = 0; j < n; j++) {
if (tokens[j].id >= whisper_token_eot(ctx)) {
continue;
}
const int64_t t0 = tokens[j].t0;
const int64_t t1 = tokens[j].t1;
int s0 = std::max(0, (int) (t0*WHISPER_SAMPLE_RATE/100));
int s1 = std::min((int) pcmf32.size() - 1, (int) (t1*WHISPER_SAMPLE_RATE/100));
const int ss0 = std::max(0, (int) (t0*WHISPER_SAMPLE_RATE/100) - hw);
const int ss1 = std::min((int) pcmf32.size() - 1, (int) (t1*WHISPER_SAMPLE_RATE/100) + hw);
const int n = ss1 - ss0;
float sum = 0.0f;
for (int k = ss0; k < ss1; k++) {
sum += pcm_avg[k];
}
const float thold = 0.5*sum/n;
{
int k = s0;
if (pcm_avg[k] > thold && j > 0) {
while (k > 0 && pcm_avg[k] > thold) {
k--;
}
tokens[j].t0 = (int64_t) (100*k/WHISPER_SAMPLE_RATE);
if (tokens[j].t0 < tokens[j - 1].t1) {
tokens[j].t0 = tokens[j - 1].t1;
} else {
s0 = k;
}
} else {
while (pcm_avg[k] < thold && k < s1) {
k++;
}
s0 = k;
tokens[j].t0 = 100*k/WHISPER_SAMPLE_RATE;
}
}
{
int k = s1;
if (pcm_avg[k] > thold) {
while (k < (int) pcmf32.size() - 1 && pcm_avg[k] > thold) {
k++;
}
tokens[j].t1 = 100*k/WHISPER_SAMPLE_RATE;
if (j < n - 1 && tokens[j].t1 > tokens[j + 1].t0) {
tokens[j].t1 = tokens[j + 1].t0;
} else {
s1 = k;
}
} else {
while (pcm_avg[k] < thold && k > s0) {
k--;
}
s1 = k;
tokens[j].t1 = 100*k/WHISPER_SAMPLE_RATE;
}
}
}
}
const int t_expand = 0;
for (int j = 0; j < n; j++) {
if (j > 0) {
tokens[j].t0 = std::max(0, (int) (tokens[j].t0 - t_expand));
}
if (j < n - 1) {
tokens[j].t1 = tokens[j].t1 + t_expand;
}
}
for (int j = 0; j < n; ++j) {
const auto & token = tokens[j];
const auto tt = token.pt > params.word_thold && token.ptsum > 0.01 ? whisper_token_to_str(ctx, token.tid) : "[?]";
printf("%s: %10s %6.3f %6.3f %6.3f %6.3f %5d %5d '%s'\n", __func__,
tt, token.p, token.pt, token.ptsum, token.vlen, (int) token.t0, (int) token.t1, token.text.c_str());
if (tokens[j].id >= whisper_token_eot(ctx)) {
continue;
}
//printf("[%s --> %s] %s\n", to_timestamp(token.t0).c_str(), to_timestamp(token.t1).c_str(), whisper_token_to_str(ctx, token.id));
//fout << "# " << to_timestamp(token.t0) << " --> " << to_timestamp(token.t1) << " " << whisper_token_to_str(ctx, token.id) << "\n";
}
static const int line_wrap = 60;
static const char * font = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
if (!is_first) {
fout << ",";
}
// background text
fout << "drawtext=fontfile='" << font << "':fontsize=24:fontcolor=gray:x=(w-text_w)/2:y=h/2:text='':enable='between(t," << t0/100.0 << "," << t0/100.0 << ")'";
is_first = false;
for (int j = 0; j < n; ++j) {
const auto & token = tokens[j];
if (tokens[j].id >= whisper_token_eot(ctx)) {
continue;
}
std::string txt_bg;
std::string txt_fg; // highlight token
std::string txt_ul; // underline
txt_bg = "> ";
txt_fg = "> ";
txt_ul = "\\ \\ ";
{
int ncnt = 0;
for (int k = 0; k < n; ++k) {
const auto & token2 = tokens[k];
if (tokens[k].id >= whisper_token_eot(ctx)) {
continue;
}
const std::string txt = whisper_token_to_str(ctx, token2.id);
txt_bg += txt;
if (k == j) {
for (int l = 0; l < (int) txt.size(); ++l) {
txt_fg += txt[l];
txt_ul += "_";
}
txt_fg += "|";
} else {
for (int l = 0; l < (int) txt.size(); ++l) {
txt_fg += "\\ ";
txt_ul += "\\ ";
}
}
ncnt += txt.size();
if (ncnt > line_wrap) {
if (k < j) {
txt_bg = "> ";
txt_fg = "> ";
txt_ul = "\\ \\ ";
ncnt = 0;
} else {
break;
}
}
}
::replace_all(txt_bg, "'", "");
::replace_all(txt_bg, "\"", "\\\"");
::replace_all(txt_fg, "'", "");
::replace_all(txt_fg, "\"", "\\\"");
}
// background text
fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=gray:x=(w-text_w)/2:y=h/2:text='" << txt_bg << "':enable='between(t," << token.tt0/100.0 << "," << token.tt1/100.0 << ")'";
// foreground text
fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=lightgreen:x=(w-text_w)/2+8:y=h/2:text='" << txt_fg << "':enable='between(t," << token.t0/100.0 << "," << token.t1/100.0 << ")'";
// underline
fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=lightgreen:x=(w-text_w)/2+8:y=h/2+16:text='" << txt_ul << "':enable='between(t," << token.t0/100.0 << "," << token.t1/100.0 << ")'";
}
}
fout << "\" -c:v libx264 -pix_fmt yuv420p -y " << fname_inp << ".mp4" << "\n";
fout << "\n\n";
fout << "echo \"Your video has been saved to " << fname_inp << ".mp4\"" << "\n";
fout << "\n";
fout << "echo \" ffplay " << fname_inp << ".mp4\"\n";
fout << "\n";
fout.close();
fprintf(stderr, "%s: run 'source %s' to generate karaoke video\n", __func__, fname);
}
return true;
}
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
whisper_params params; whisper_params params;
@ -146,6 +712,11 @@ int main(int argc, char ** argv) {
struct whisper_context * ctx = whisper_init(params.model.c_str()); struct whisper_context * ctx = whisper_init(params.model.c_str());
if (ctx == nullptr) {
fprintf(stderr, "error: failed to initialize whisper context\n");
return 3;
}
for (int f = 0; f < (int) params.fname_inp.size(); ++f) { for (int f = 0; f < (int) params.fname_inp.size(); ++f) {
const auto fname_inp = params.fname_inp[f]; const auto fname_inp = params.fname_inp[f];
@ -156,22 +727,22 @@ int main(int argc, char ** argv) {
if (!drwav_init_file(&wav, fname_inp.c_str(), NULL)) { if (!drwav_init_file(&wav, fname_inp.c_str(), NULL)) {
fprintf(stderr, "%s: failed to open WAV file '%s' - check your input\n", argv[0], fname_inp.c_str()); fprintf(stderr, "%s: failed to open WAV file '%s' - check your input\n", argv[0], fname_inp.c_str());
whisper_print_usage(argc, argv, {}); whisper_print_usage(argc, argv, {});
return 3; return 4;
} }
if (wav.channels != 1 && wav.channels != 2) { if (wav.channels != 1 && wav.channels != 2) {
fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", argv[0], fname_inp.c_str()); fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", argv[0], fname_inp.c_str());
return 4; return 5;
} }
if (wav.sampleRate != WHISPER_SAMPLE_RATE) { if (wav.sampleRate != WHISPER_SAMPLE_RATE) {
fprintf(stderr, "%s: WAV file '%s' must be 16 kHz\n", argv[0], fname_inp.c_str()); fprintf(stderr, "%s: WAV file '%s' must be 16 kHz\n", argv[0], fname_inp.c_str());
return 5; return 6;
} }
if (wav.bitsPerSample != 16) { if (wav.bitsPerSample != 16) {
fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", argv[0], fname_inp.c_str()); fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", argv[0], fname_inp.c_str());
return 6; return 7;
} }
int n = wav.totalPCMFrameCount; int n = wav.totalPCMFrameCount;
@ -194,6 +765,13 @@ int main(int argc, char ** argv) {
} }
} }
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
params.n_threads*params.n_processors, std::thread::hardware_concurrency(), whisper_print_system_info());
}
// print some info about the processing // print some info about the processing
{ {
fprintf(stderr, "\n"); fprintf(stderr, "\n");
@ -204,8 +782,9 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__); fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
} }
} }
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, lang = %s, task = %s, timestamps = %d ...\n", fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d ...\n",
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE, params.n_threads, __func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
params.n_threads, params.n_processors,
params.language.c_str(), params.language.c_str(),
params.translate ? "translate" : "transcribe", params.translate ? "translate" : "transcribe",
params.no_timestamps ? 0 : 1); params.no_timestamps ? 0 : 1);
@ -218,108 +797,54 @@ int main(int argc, char ** argv) {
{ {
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY); whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
wparams.print_realtime = true; wparams.print_realtime = false;
wparams.print_progress = false; wparams.print_progress = false;
wparams.print_timestamps = !params.no_timestamps; wparams.print_timestamps = !params.no_timestamps;
wparams.print_special_tokens = params.print_special_tokens; wparams.print_special_tokens = params.print_special_tokens;
wparams.translate = params.translate; wparams.translate = params.translate;
wparams.language = params.language.c_str(); wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads; wparams.n_threads = params.n_threads;
wparams.offset_ms = params.offset_ms; wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx;
wparams.offset_ms = params.offset_t_ms;
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
fprintf(stderr, "%s: failed to process audio\n", argv[0]);
return 7;
}
// print result // this callback is called on each new segment
if (!wparams.print_realtime) { if (!wparams.print_realtime) {
printf("\n"); wparams.new_segment_callback = whisper_print_segment_callback;
wparams.new_segment_callback_user_data = &params;
const int n_segments = whisper_full_n_segments(ctx); }
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
if (params.no_timestamps) {
printf("%s", text);
fflush(stdout);
} else {
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text); if (whisper_full_parallel(ctx, wparams, pcmf32.data(), pcmf32.size(), params.n_processors) != 0) {
} fprintf(stderr, "%s: failed to process audio\n", argv[0]);
} return 8;
} }
}
// output stuff
{
printf("\n"); printf("\n");
// output to text file // output to text file
if (params.output_txt) { if (params.output_txt) {
const auto fname_txt = fname_inp + ".txt"; const auto fname_txt = fname_inp + ".txt";
std::ofstream fout_txt(fname_txt); output_txt(ctx, fname_txt.c_str());
if (!fout_txt.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_txt.c_str());
return 8;
}
fprintf(stderr, "%s: saving output to '%s.txt'\n", __func__, fname_inp.c_str());
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
fout_txt << text;
}
} }
// output to VTT file // output to VTT file
if (params.output_vtt) { if (params.output_vtt) {
const auto fname_vtt = fname_inp + ".vtt"; const auto fname_vtt = fname_inp + ".vtt";
std::ofstream fout_vtt(fname_vtt); output_vtt(ctx, fname_vtt.c_str());
if (!fout_vtt.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_vtt.c_str());
return 9;
}
fprintf(stderr, "%s: saving output to '%s.vtt'\n", __func__, fname_inp.c_str());
fout_vtt << "WEBVTT\n\n";
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
fout_vtt << to_timestamp(t0) << " --> " << to_timestamp(t1) << "\n";
fout_vtt << text << "\n\n";
}
} }
// output to SRT file // output to SRT file
if (params.output_srt) { if (params.output_srt) {
const auto fname_srt = fname_inp + ".srt"; const auto fname_srt = fname_inp + ".srt";
std::ofstream fout_srt(fname_srt); output_srt(ctx, fname_srt.c_str(), params);
if (!fout_srt.is_open()) { }
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_srt.c_str());
return 10;
}
fprintf(stderr, "%s: saving output to '%s.srt'\n", __func__, fname_inp.c_str());
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
fout_srt << i + 1 << "\n"; // output to WTS file
fout_srt << to_timestamp(t0) << " --> " << to_timestamp(t1) << "\n"; if (params.output_wts) {
fout_srt << text << "\n\n"; const auto fname_wts = fname_inp + ".wts";
} output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, pcmf32);
} }
} }
} }

@ -1,3 +1,4 @@
#define WHISPER_BUILD
#include "whisper.h" #include "whisper.h"
#include "ggml.h" #include "ggml.h"
@ -210,16 +211,13 @@ struct whisper_vocab {
} }
}; };
struct whisper_result {
int64_t t;
whisper_token id;
};
struct whisper_segment { struct whisper_segment {
int64_t t0; int64_t t0;
int64_t t1; int64_t t1;
std::string text; std::string text;
std::vector<whisper_token_data> tokens;
}; };
// medium // medium
@ -379,8 +377,12 @@ struct whisper_model {
struct ggml_tensor * memory_cross_k; struct ggml_tensor * memory_cross_k;
struct ggml_tensor * memory_cross_v; struct ggml_tensor * memory_cross_v;
// // context
struct ggml_context * ctx; struct ggml_context * ctx;
struct ggml_context * ctx_mem;
// tensors
int n_loaded;
std::map<std::string, struct ggml_tensor *> tensors; std::map<std::string, struct ggml_tensor *> tensors;
}; };
@ -392,9 +394,10 @@ struct whisper_context {
int64_t t_decode_us = 0; int64_t t_decode_us = 0;
int64_t t_start_us = 0; int64_t t_start_us = 0;
std::vector<uint8_t> buf_model; std::vector<uint8_t> * buf_model; // the model buffer is read-only and can be shared between processors
std::vector<uint8_t> buf_compute; std::vector<uint8_t> buf_memory;
std::vector<uint8_t> buf_compute_layer; std::vector<uint8_t> buf_compute;
std::vector<uint8_t> buf_compute_layer;
whisper_model model; whisper_model model;
whisper_vocab vocab; whisper_vocab vocab;
@ -404,7 +407,6 @@ struct whisper_context {
std::vector<float> probs; std::vector<float> probs;
std::vector<float> logits; std::vector<float> logits;
std::vector<whisper_result> result_cur;
std::vector<whisper_segment> result_all; std::vector<whisper_segment> result_all;
std::vector<whisper_token> prompt_past; std::vector<whisper_token> prompt_past;
@ -494,13 +496,16 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16); fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16);
fprintf(stderr, "%s: type = %d\n", __func__, model.type); fprintf(stderr, "%s: type = %d\n", __func__, model.type);
wctx.buf_model.resize(MEM_REQ_MODEL.at(model.type)); wctx.buf_model = new std::vector<uint8_t>();
wctx.buf_model->resize(MEM_REQ_MODEL.at(model.type));
wctx.buf_memory.resize(std::max(MEM_REQ_MODEL.at(model.type), MEM_REQ_MODEL.at(model.type))); // TODO: TMP !!!
wctx.buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type))); wctx.buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type)));
wctx.buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type))); wctx.buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type)));
// this is the total memory required to run the inference // this is the total memory required to run the inference
const size_t mem_required = const size_t mem_required =
wctx.buf_model.size() + wctx.buf_model->size() +
wctx.buf_memory.size() +
wctx.buf_compute.size() + wctx.buf_compute.size() +
wctx.buf_compute_layer.size(); wctx.buf_compute_layer.size();
@ -583,6 +588,7 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
size_t ctx_size = 0; size_t ctx_size = 0;
size_t ctx_mem_size = 0;
{ {
const auto & hparams = model.hparams; const auto & hparams = model.hparams;
@ -691,11 +697,11 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b
} }
ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k ctx_mem_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k
ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v ctx_mem_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v
ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k ctx_mem_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k
ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v ctx_mem_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v
ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead
@ -705,8 +711,8 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
// create the ggml context // create the ggml context
{ {
struct ggml_init_params params = { struct ggml_init_params params = {
.mem_size = wctx.buf_model.size(), .mem_size = wctx.buf_model->size(),
.mem_buffer = wctx.buf_model.data(), .mem_buffer = wctx.buf_model->data(),
}; };
model.ctx = ggml_init(params); model.ctx = ggml_init(params);
@ -716,6 +722,20 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
} }
} }
// create the ggml memory context
{
struct ggml_init_params params = {
.mem_size = wctx.buf_memory.size(),
.mem_buffer = wctx.buf_memory.data(),
};
model.ctx_mem = ggml_init(params);
if (!model.ctx_mem) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights // prepare memory for the weights
{ {
auto & ctx = model.ctx; auto & ctx = model.ctx;
@ -914,7 +934,7 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
// key + value memory // key + value memory
{ {
auto & ctx = model.ctx; auto & ctx = model.ctx_mem;
const auto & hparams = model.hparams; const auto & hparams = model.hparams;
@ -946,14 +966,15 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) + ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) +
ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v); ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
fprintf(stderr, "%s: memory size = %8.2f MB \n", __func__, memory_size/1024.0/1024.0); fprintf(stderr, "%s: memory size = %8.2f MB\n", __func__, memory_size/1024.0/1024.0);
} }
// load weights // load weights
{ {
int n_loaded = 0;
size_t total_size = 0; size_t total_size = 0;
model.n_loaded = 0;
while (true) { while (true) {
int32_t n_dims; int32_t n_dims;
int32_t length; int32_t length;
@ -1006,15 +1027,15 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
//printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); //printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
total_size += ggml_nbytes(tensor); total_size += ggml_nbytes(tensor);
n_loaded++; model.n_loaded++;
} }
fprintf(stderr, "%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0); fprintf(stderr, "%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
if (n_loaded == 0) { if (model.n_loaded == 0) {
fprintf(stderr, "%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__); fprintf(stderr, "%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__);
} else if (n_loaded != (int) model.tensors.size()) { } else if (model.n_loaded != (int) model.tensors.size()) {
fprintf(stderr, "%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), n_loaded); fprintf(stderr, "%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), model.n_loaded);
return false; return false;
} }
} }
@ -1782,9 +1803,11 @@ bool whisper_decode(
} }
// the most basic sampling scheme - select the top token // the most basic sampling scheme - select the top token
whisper_vocab::id whisper_sample_best( whisper_token_data whisper_sample_best(
const whisper_vocab & vocab, const whisper_vocab & vocab,
const float * probs) { const float * probs) {
whisper_token_data result;
int n_logits = vocab.id_to_token.size(); int n_logits = vocab.id_to_token.size();
std::vector<std::pair<double, whisper_vocab::id>> probs_id; std::vector<std::pair<double, whisper_vocab::id>> probs_id;
@ -1794,24 +1817,34 @@ whisper_vocab::id whisper_sample_best(
probs_id.push_back(std::make_pair(probs[i], i)); probs_id.push_back(std::make_pair(probs[i], i));
} }
double sum_ts = 0.0; {
double max_tx = 0.0; double sum_ts = 0.0;
double max_ts = -1.0;
double max_tx = -1.0;
for (int i = 0; i < vocab.token_beg; i++) { for (int i = 0; i < vocab.token_beg; i++) {
max_tx = std::max(max_tx, probs_id[i].first); max_tx = std::max(max_tx, probs_id[i].first);
} }
for (int i = vocab.token_beg; i < n_logits; i++) { for (int i = vocab.token_beg; i < n_logits; i++) {
sum_ts += probs_id[i].first; sum_ts += probs_id[i].first;
} if (probs_id[i].first > max_ts) {
max_ts = probs_id[i].first;
result.tid = probs_id[i].second;
}
}
// if the probability sum of all timestamp tokesn is higher than the max probability of the text tokens - sample a // if the probability sum of all timestamp tokens is higher than the max probability of the text tokens - sample a
// timestamp token // timestamp token
if (sum_ts > max_tx) { if (sum_ts > max_tx) {
// ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L430-L438 // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L430-L438
for (int i = 0; i < vocab.token_beg; i++) { for (int i = 0; i < vocab.token_beg; i++) {
probs_id[i].first = -INFINITY; probs_id[i].first = -INFINITY;
}
} }
result.pt = max_ts/(sum_ts + 1e-10);
result.ptsum = sum_ts;
} }
// find the top K tokens // find the top K tokens
@ -1839,7 +1872,10 @@ whisper_vocab::id whisper_sample_best(
res++; res++;
} }
return probs_id[res].second; result.id = probs_id[res].second;
result.p = probs_id[res].first;
return result;
} }
// samples only from the timestamps tokens // samples only from the timestamps tokens
@ -1875,14 +1911,19 @@ whisper_vocab::id whisper_sample_timestamp(
return probs_id[0].second; return probs_id[0].second;
} }
static std::string to_timestamp(int64_t t) { // 500 -> 00:05.000
int64_t sec = t/100; // 6000 -> 01:00.000
int64_t msec = t - sec*100; static std::string to_timestamp(int64_t t, bool comma = false) {
int64_t min = sec/60; int64_t msec = t * 10;
sec = sec - min*60; int64_t hr = msec / (1000 * 60 * 60);
msec = msec - hr * (1000 * 60 * 60);
int64_t min = msec / (1000 * 60);
msec = msec - min * (1000 * 60);
int64_t sec = msec / 1000;
msec = msec - sec * 1000;
char buf[32]; char buf[32];
snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec); snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
return std::string(buf); return std::string(buf);
} }
@ -2104,6 +2145,9 @@ struct whisper_context * whisper_init(const char * path_model) {
void whisper_free(struct whisper_context * ctx) { void whisper_free(struct whisper_context * ctx) {
if (ctx) { if (ctx) {
if (ctx->buf_model) {
delete ctx->buf_model;
}
delete ctx; delete ctx;
} }
} }
@ -2166,7 +2210,7 @@ int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, i
return 0; return 0;
} }
whisper_token whisper_sample_best(struct whisper_context * ctx) { struct whisper_token_data whisper_sample_best(struct whisper_context * ctx) {
const int64_t t_start_sample_us = ggml_time_us(); const int64_t t_start_sample_us = ggml_time_us();
// TODO: simplify // TODO: simplify
@ -2277,6 +2321,7 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
/*.strategy =*/ WHISPER_SAMPLING_GREEDY, /*.strategy =*/ WHISPER_SAMPLING_GREEDY,
/*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()), /*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()),
/*.n_max_text_ctx =*/ 16384,
/*.offset_ms =*/ 0, /*.offset_ms =*/ 0,
/*.translate =*/ false, /*.translate =*/ false,
@ -2297,6 +2342,9 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
/*.beam_width =*/ -1, /*.beam_width =*/ -1,
/*.n_best =*/ -1, /*.n_best =*/ -1,
}, },
/*.new_segment_callback =*/ nullptr,
/*.new_segment_callback_user_data =*/ nullptr,
}; };
} break; } break;
case WHISPER_SAMPLING_BEAM_SEARCH: case WHISPER_SAMPLING_BEAM_SEARCH:
@ -2305,6 +2353,7 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
/*.strategy =*/ WHISPER_SAMPLING_BEAM_SEARCH, /*.strategy =*/ WHISPER_SAMPLING_BEAM_SEARCH,
/*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()), /*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()),
/*.n_max_text_ctx =*/ 16384,
/*.offset_ms =*/ 0, /*.offset_ms =*/ 0,
/*.translate =*/ false, /*.translate =*/ false,
@ -2325,6 +2374,9 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
/*.beam_width =*/ 10, /*.beam_width =*/ 10,
/*.n_best =*/ 5, /*.n_best =*/ 5,
}, },
/*.new_segment_callback =*/ nullptr,
/*.new_segment_callback_user_data =*/ nullptr,
}; };
} break; } break;
} }
@ -2339,7 +2391,6 @@ int whisper_full(
int n_samples) { int n_samples) {
// clear old results // clear old results
auto & result_all = ctx->result_all; auto & result_all = ctx->result_all;
auto & result_cur = ctx->result_cur;
result_all.clear(); result_all.clear();
@ -2349,10 +2400,12 @@ int whisper_full(
return -1; return -1;
} }
const int seek_start = params.offset_ms/10;
// if length of spectrogram is less than 1s (100 samples), then return // if length of spectrogram is less than 1s (100 samples), then return
// basically don't process anything that is less than 1s // basically don't process anything that is less than 1s
// see issue #39: https://github.com/ggerganov/whisper.cpp/issues/39 // see issue #39: https://github.com/ggerganov/whisper.cpp/issues/39
if (whisper_n_len(ctx) < 100) { if (whisper_n_len(ctx) < 100 + seek_start) {
return 0; return 0;
} }
@ -2376,8 +2429,14 @@ int whisper_full(
int progress_prev = 0; int progress_prev = 0;
int progress_step = 5; int progress_step = 5;
std::vector<whisper_token_data> tokens_cur;
tokens_cur.reserve(whisper_n_text_ctx(ctx));
std::vector<whisper_token> prompt;
prompt.reserve(whisper_n_text_ctx(ctx));
// main loop // main loop
int seek = params.offset_ms/10; int seek = seek_start;
while (true) { while (true) {
int progress_cur = (100*seek)/whisper_n_len(ctx); int progress_cur = (100*seek)/whisper_n_len(ctx);
while (progress_cur >= progress_prev + progress_step) { while (progress_cur >= progress_prev + progress_step) {
@ -2397,13 +2456,12 @@ int whisper_full(
return 7; return 7;
} }
std::vector<whisper_token> prompt;
int n_past = 0; int n_past = 0;
prompt.clear();
// if we have already generated some text, use it as a prompt to condition the next generation // if we have already generated some text, use it as a prompt to condition the next generation
if (prompt_past.size() > 0) { if (prompt_past.size() > 0) {
int n_take = std::min(whisper_n_text_ctx(ctx)/2, int(prompt_past.size())); int n_take = std::min(std::min(params.n_max_text_ctx, whisper_n_text_ctx(ctx)/2), int(prompt_past.size()));
prompt = { whisper_token_prev(ctx) }; prompt = { whisper_token_prev(ctx) };
prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end()); prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end());
@ -2426,7 +2484,7 @@ int whisper_full(
// the accumulated transcription in the current interation // the accumulated transcription in the current interation
int result_len = 0; int result_len = 0;
result_cur.clear(); tokens_cur.clear();
for (int i = 0; i < whisper_n_text_ctx(ctx)/2 - 4; ++i) { for (int i = 0; i < whisper_n_text_ctx(ctx)/2 - 4; ++i) {
if (whisper_decode(ctx, prompt.data(), prompt.size(), n_past, params.n_threads) != 0) { if (whisper_decode(ctx, prompt.data(), prompt.size(), n_past, params.n_threads) != 0) {
@ -2445,28 +2503,29 @@ int whisper_full(
// feel free to experiment! // feel free to experiment!
// //
{ {
whisper_token id = 0; auto token = whisper_sample_best(ctx);
whisper_token tid = whisper_token_beg(ctx);
id = whisper_sample_best(ctx); if (i == 0) {
if (i > 0) { token.tid = whisper_token_beg(ctx);
tid = whisper_sample_timestamp(ctx);
} }
// update sliding window // timestamp token - update sliding window
if (id > whisper_token_beg(ctx)) { if (token.id > whisper_token_beg(ctx)) {
seek_delta = 2*(id - whisper_token_beg(ctx)); seek_delta = 2*(token.id - whisper_token_beg(ctx));
result_len = i + 1; result_len = i + 1;
} }
// add it to the context // add it to the context
prompt.push_back(id); prompt.push_back(token.id);
result_cur.push_back({ seek + 2*(tid - whisper_token_beg(ctx)), id }); tokens_cur.push_back(token);
//printf("%s: %s\n", __func__, ctx->vocab.id_to_token[id].c_str()); //{
// const auto tt = token.pt > 0.10 ? ctx->vocab.id_to_token[token.tid] : "[?]";
// printf("%s: %10s %6.3f '%s'\n", __func__, tt.c_str(), token.pt, ctx->vocab.id_to_token[token.id].c_str());
//}
// end of text token // end of text token
if (id == whisper_token_eot(ctx)) { if (token.id == whisper_token_eot(ctx)) {
if (result_len == 0) { if (result_len == 0) {
if (seek + seek_delta + 100 >= whisper_n_len(ctx)) { if (seek + seek_delta + 100 >= whisper_n_len(ctx)) {
result_len = i + 1; result_len = i + 1;
@ -2477,6 +2536,12 @@ int whisper_full(
} }
break; break;
} }
// TESTS: if no tensors are loaded, it means we are running tests
if (ctx->model.n_loaded == 0) {
seek_delta = 100*WHISPER_CHUNK_SIZE;
break;
}
} }
if (done) { if (done) {
@ -2484,25 +2549,30 @@ int whisper_full(
} }
} }
result_cur.resize(result_len); tokens_cur.resize(result_len);
for (const auto & r : result_cur) { for (const auto & r : tokens_cur) {
prompt_past.push_back(r.id); prompt_past.push_back(r.id);
} }
// store the text from this iteration // store the text from this iteration
if (result_cur.size() > 0) { if (tokens_cur.size() > 0) {
auto t0 = result_cur.front().t; int i0 = 0;
auto t0 = seek + 2*(tokens_cur.front().tid - whisper_token_beg(ctx));
std::string text = ""; std::string text = "";
for (int i = 0; i < (int) result_cur.size(); i++) { for (int i = 0; i < (int) tokens_cur.size(); i++) {
if (params.print_special_tokens == false && result_cur[i].id >= whisper_token_eot(ctx)) { //printf("%s: %18s %6.3f %18s %6.3f\n", __func__,
// ctx->vocab.id_to_token[tokens_cur[i].id].c_str(), tokens_cur[i].p,
// ctx->vocab.id_to_token[tokens_cur[i].tid].c_str(), tokens_cur[i].pt);
if (params.print_special_tokens == false && tokens_cur[i].id >= whisper_token_eot(ctx)) {
} else { } else {
text += whisper_token_to_str(ctx, result_cur[i].id); text += whisper_token_to_str(ctx, tokens_cur[i].id);
} }
if (result_cur[i].id > whisper_token_beg(ctx)) { if (tokens_cur[i].id > whisper_token_beg(ctx)) {
const auto t1 = result_cur[i].t; const auto t1 = seek + 2*(tokens_cur[i].tid - whisper_token_beg(ctx));
if (!text.empty()) { if (!text.empty()) {
if (params.print_realtime) { if (params.print_realtime) {
if (params.print_timestamps) { if (params.print_timestamps) {
@ -2513,14 +2583,21 @@ int whisper_full(
} }
} }
result_all.push_back({ t0, t1, text }); result_all.push_back({ t0, t1, text, {} });
for (int j = i0; j <= i; j++) {
result_all.back().tokens.push_back(tokens_cur[j]);
}
if (params.new_segment_callback) {
params.new_segment_callback(ctx, params.new_segment_callback_user_data);
}
} }
text = ""; text = "";
while (i < (int) result_cur.size() && result_cur[i].id > whisper_token_beg(ctx)) { while (i < (int) tokens_cur.size() && tokens_cur[i].id > whisper_token_beg(ctx)) {
i++; i++;
} }
i--; i--;
t0 = result_cur[i].t; t0 = t1;
i0 = i + 1;
} }
} }
@ -2536,7 +2613,13 @@ int whisper_full(
} }
} }
result_all.push_back({ t0, t1, text }); result_all.push_back({ t0, t1, text, {} });
for (int j = i0; j < (int) tokens_cur.size(); j++) {
result_all.back().tokens.push_back(tokens_cur[j]);
}
if (params.new_segment_callback) {
params.new_segment_callback(ctx, params.new_segment_callback_user_data);
}
} }
} }
@ -2546,6 +2629,156 @@ int whisper_full(
return 0; return 0;
} }
int whisper_full_parallel(
struct whisper_context * ctx,
struct whisper_full_params params,
const float * samples,
int n_samples,
const int n_processors) {
if (n_processors == 1) {
return whisper_full(ctx, params, samples, n_samples);
}
int ret = 0;
// prepare separate contexts for each thread
std::vector<struct whisper_context> ctxs(n_processors - 1);
for (int i = 0; i < n_processors - 1; ++i) {
ctxs[i] = *ctx;
auto & model = ctxs[i].model;
// create the ggml memory context
{
struct ggml_init_params params = {
.mem_size = ctxs[i].buf_memory.size(),
.mem_buffer = ctxs[i].buf_memory.data(),
};
model.ctx_mem = ggml_init(params);
if (!model.ctx_mem) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// separate key + value memory for each processor
{
auto & ctx = model.ctx_mem;
const auto & hparams = model.hparams;
const int n_text_state = hparams.n_text_state;
const int n_text_layer = hparams.n_text_layer;
const int n_text_ctx = hparams.n_text_ctx;
// key/value memory for the self-attention layer
{
const int n_mem = n_text_layer*n_text_ctx;
const int n_elements = n_text_state*n_mem;
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
}
// key/value memory for the cross-attention layer
{
const int n_audio_ctx = hparams.n_audio_ctx;
const int n_mem = n_text_layer*n_audio_ctx;
const int n_elements = n_text_state*n_mem;
model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
}
const size_t memory_size =
ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) +
ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
}
}
const int offset_samples = (WHISPER_SAMPLE_RATE*params.offset_ms)/1000;
const int n_samples_per_processor = (n_samples - offset_samples)/n_processors;
// the calling thread will process the first chunk
// while the other threads will process the remaining chunks
std::vector<std::thread> workers(n_processors - 1);
for (int i = 0; i < n_processors - 1; ++i) {
const int start_samples = offset_samples + (i + 1)*n_samples_per_processor;
const int n_samples_cur = (i == n_processors - 2) ? n_samples - start_samples : n_samples_per_processor;
auto params_cur = params;
params_cur.offset_ms = 0;
params_cur.print_progress = false;
params_cur.print_realtime = false;
params_cur.new_segment_callback = nullptr;
params_cur.new_segment_callback_user_data = nullptr;
workers[i] = std::thread(whisper_full, &ctxs[i], std::move(params_cur), samples + start_samples, n_samples_cur);
}
{
auto params_cur = params;
ret = whisper_full(ctx, std::move(params_cur), samples, offset_samples + n_samples_per_processor);
}
for (int i = 0; i < n_processors - 1; ++i) {
workers[i].join();
}
const int64_t offset_t = (int64_t) params.offset_ms/10.0;
// combine results into ctx->result_all
for (int i = 0; i < n_processors - 1; ++i) {
auto & results_i = ctxs[i].result_all;
for (int j = 0; j < (int) results_i.size(); ++j) {
// correct the segment timestamp taking into account the offset
results_i[j].t0 += 100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t;
results_i[j].t1 += 100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t;
// make sure that segments are not overlapping
if (ctx->result_all.size() > 0) {
results_i[j].t0 = std::max(results_i[j].t0, ctx->result_all.back().t1);
}
ctx->result_all.push_back(std::move(results_i[j]));
// call the new_segment_callback for each segment
if (params.new_segment_callback) {
params.new_segment_callback(ctx, params.new_segment_callback_user_data);
}
}
ctx->t_mel_us += ctxs[i].t_mel_us;
ctx->t_sample_us += ctxs[i].t_sample_us;
ctx->t_encode_us += ctxs[i].t_encode_us;
ctx->t_decode_us += ctxs[i].t_decode_us;
}
// average the timings
ctx->t_mel_us /= n_processors;
ctx->t_sample_us /= n_processors;
ctx->t_encode_us /= n_processors;
ctx->t_decode_us /= n_processors;
// print information about the audio boundaries
fprintf(stderr, "\n");
fprintf(stderr, "%s: the audio has been split into %d chunks at the following times:\n", __func__, n_processors);
for (int i = 0; i < n_processors - 1; ++i) {
fprintf(stderr, "%s: split %d - %s\n", __func__, (i + 1), to_timestamp(100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t).c_str());
}
fprintf(stderr, "%s: the transcription quality may be degraded near these boundaries\n", __func__);
return ret;
}
int whisper_full_n_segments(struct whisper_context * ctx) { int whisper_full_n_segments(struct whisper_context * ctx) {
return ctx->result_all.size(); return ctx->result_all.size();
} }
@ -2561,3 +2794,37 @@ int64_t whisper_full_get_segment_t1(struct whisper_context * ctx, int i_segment)
const char * whisper_full_get_segment_text(struct whisper_context * ctx, int i_segment) { const char * whisper_full_get_segment_text(struct whisper_context * ctx, int i_segment) {
return ctx->result_all[i_segment].text.c_str(); return ctx->result_all[i_segment].text.c_str();
} }
int whisper_full_n_tokens(struct whisper_context * ctx, int i_segment) {
return ctx->result_all[i_segment].tokens.size();
}
const char * whisper_full_get_token_text(struct whisper_context * ctx, int i_segment, int i_token) {
return ctx->vocab.id_to_token[ctx->result_all[i_segment].tokens[i_token].id].c_str();
}
whisper_token whisper_full_get_token_id(struct whisper_context * ctx, int i_segment, int i_token) {
return ctx->result_all[i_segment].tokens[i_token].id;
}
struct whisper_token_data whisper_full_get_token_data(struct whisper_context * ctx, int i_segment, int i_token) {
return ctx->result_all[i_segment].tokens[i_token];
}
float whisper_full_get_token_p(struct whisper_context * ctx, int i_segment, int i_token) {
return ctx->result_all[i_segment].tokens[i_token].p;
}
const char * whisper_print_system_info() {
static std::string s;
s = "";
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
return s.c_str();
}

@ -68,6 +68,15 @@ extern "C" {
typedef int whisper_token; typedef int whisper_token;
struct whisper_token_data {
whisper_token id; // token id
whisper_token tid; // forced timestamp token id
float p; // probability of the token
float pt; // probability of the timestamp token
float ptsum; // sum of probabilities of all timestamp tokens
};
// Allocates all memory needed for the model and loads the model from the given file. // Allocates all memory needed for the model and loads the model from the given file.
// Returns NULL on failure. // Returns NULL on failure.
WHISPER_API struct whisper_context * whisper_init(const char * path_model); WHISPER_API struct whisper_context * whisper_init(const char * path_model);
@ -120,7 +129,7 @@ extern "C" {
// You can also implement your own sampling method using the whisper_get_probs() function. // You can also implement your own sampling method using the whisper_get_probs() function.
// whisper_sample_best() returns the token with the highest probability // whisper_sample_best() returns the token with the highest probability
// whisper_sample_timestamp() returns the most probable timestamp token // whisper_sample_timestamp() returns the most probable timestamp token
WHISPER_API whisper_token whisper_sample_best(struct whisper_context * ctx); WHISPER_API struct whisper_token_data whisper_sample_best(struct whisper_context * ctx);
WHISPER_API whisper_token whisper_sample_timestamp(struct whisper_context * ctx); WHISPER_API whisper_token whisper_sample_timestamp(struct whisper_context * ctx);
// Return the id of the specified language, returns -1 if not found // Return the id of the specified language, returns -1 if not found
@ -160,10 +169,16 @@ extern "C" {
WHISPER_SAMPLING_BEAM_SEARCH, // TODO: not implemented yet! WHISPER_SAMPLING_BEAM_SEARCH, // TODO: not implemented yet!
}; };
// Text segment callback
// Called on every newly generated text segment
// Use the whisper_full_...() functions to obtain the text segments
typedef void (*whisper_new_segment_callback)(struct whisper_context * ctx, void * user_data);
struct whisper_full_params { struct whisper_full_params {
enum whisper_sampling_strategy strategy; enum whisper_sampling_strategy strategy;
int n_threads; int n_threads;
int n_max_text_ctx;
int offset_ms; int offset_ms;
bool translate; bool translate;
@ -184,6 +199,9 @@ extern "C" {
int beam_width; int beam_width;
int n_best; int n_best;
} beam_search; } beam_search;
whisper_new_segment_callback new_segment_callback;
void * new_segment_callback_user_data;
}; };
WHISPER_API struct whisper_full_params whisper_full_default_params(enum whisper_sampling_strategy strategy); WHISPER_API struct whisper_full_params whisper_full_default_params(enum whisper_sampling_strategy strategy);
@ -196,6 +214,16 @@ extern "C" {
const float * samples, const float * samples,
int n_samples); int n_samples);
// Split the input audio in chunks and process each chunk separately using whisper_full()
// It seems this approach can offer some speedup in some cases.
// However, the transcription accuracy can be worse at the beginning and end of each chunk.
WHISPER_API int whisper_full_parallel(
struct whisper_context * ctx,
struct whisper_full_params params,
const float * samples,
int n_samples,
const int n_processors);
// Number of generated text segments. // Number of generated text segments.
// A segment can be a few words, a sentence, or even a paragraph. // A segment can be a few words, a sentence, or even a paragraph.
WHISPER_API int whisper_full_n_segments(struct whisper_context * ctx); WHISPER_API int whisper_full_n_segments(struct whisper_context * ctx);
@ -207,6 +235,23 @@ extern "C" {
// Get the text of the specified segment. // Get the text of the specified segment.
WHISPER_API const char * whisper_full_get_segment_text(struct whisper_context * ctx, int i_segment); WHISPER_API const char * whisper_full_get_segment_text(struct whisper_context * ctx, int i_segment);
// Get number of tokens in the specified segment.
WHISPER_API int whisper_full_n_tokens(struct whisper_context * ctx, int i_segment);
// Get the token text of the specified token in the specified segment.
WHISPER_API const char * whisper_full_get_token_text(struct whisper_context * ctx, int i_segment, int i_token);
WHISPER_API whisper_token whisper_full_get_token_id (struct whisper_context * ctx, int i_segment, int i_token);
// Get token data for the specified token in the specified segment.
// This contains probabilities, timestamps, etc.
WHISPER_API struct whisper_token_data whisper_full_get_token_data(struct whisper_context * ctx, int i_segment, int i_token);
// Get the probability of the specified token in the specified segment.
WHISPER_API float whisper_full_get_token_p(struct whisper_context * ctx, int i_segment, int i_token);
// Print system information
WHISPER_API const char * whisper_print_system_info();
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

@ -11,7 +11,7 @@ extern "C" {
#define GGML_MAX_DIMS 4 #define GGML_MAX_DIMS 4
#define GGML_MAX_NODES 4096 #define GGML_MAX_NODES 4096
#define GGML_MAX_PARAMS 16 #define GGML_MAX_PARAMS 16
#define GGML_MAX_CONTEXTS 16 #define GGML_MAX_CONTEXTS 64
#define GGML_MAX_OPT 4 #define GGML_MAX_OPT 4
#ifdef __ARM_NEON #ifdef __ARM_NEON
@ -548,6 +548,17 @@ enum ggml_opt_result ggml_opt(
struct ggml_opt_params params, struct ggml_opt_params params,
struct ggml_tensor * f); struct ggml_tensor * f);
//
// system info
//
int ggml_cpu_has_avx2(void);
int ggml_cpu_has_avx512(void);
int ggml_cpu_has_neon(void);
int ggml_cpu_has_fp16_va(void);
int ggml_cpu_has_wasm_simd(void);
int ggml_cpu_has_blas(void);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

@ -15,10 +15,44 @@
#include <stdio.h> #include <stdio.h>
#if defined _MSC_VER #if defined _MSC_VER
#include "msvc_thread_atomic.h" #include <Windows.h>
typedef volatile LONG atomic_int;
typedef atomic_int atomic_bool;
static void atomic_store(atomic_int* ptr, LONG val) {
InterlockedExchange(ptr, val);
}
static LONG atomic_load(atomic_int* ptr) {
return InterlockedCompareExchange(ptr, 0, 0);
}
static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
return InterlockedExchangeAdd(ptr, inc);
}
static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
return atomic_fetch_add(ptr, -(dec));
}
typedef HANDLE pthread_t;
typedef DWORD thread_ret_t;
static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
out = CreateThread(NULL, 0, func, arg, 0, NULL);
return out != NULL;
}
static int pthread_join(pthread_t thread, void* unused) {
return (int) WaitForSingleObject(thread, INFINITE);
}
static int sched_yield (void) {
Sleep (0);
return 0;
}
#else #else
#include <pthread.h> #include <pthread.h>
#include <stdatomic.h> #include <stdatomic.h>
typedef void* thread_ret_t; typedef void* thread_ret_t;
#endif #endif
@ -47,6 +81,8 @@ typedef void* thread_ret_t;
#ifdef GGML_USE_ACCELERATE #ifdef GGML_USE_ACCELERATE
#include <Accelerate/Accelerate.h> #include <Accelerate/Accelerate.h>
#elif GGML_USE_OPENBLAS
#include <cblas.h>
#endif #endif
// floating point type used to accumulate sums // floating point type used to accumulate sums
@ -73,7 +109,11 @@ ggml_fp16_t ggml_fp32_to_fp16(float x) {
#else #else
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#include <immintrin.h> #include <immintrin.h>
#endif
// FP16 <-> FP32 // FP16 <-> FP32
// ref: https://github.com/Maratyszcza/FP16 // ref: https://github.com/Maratyszcza/FP16
@ -288,7 +328,7 @@ inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float
sumf += x[i]*y[i]; sumf += x[i]*y[i];
} }
#elif defined(__AVX2__) #elif defined(__AVX2__)
// AVX 256-bit (unroll 4) // AVX 256-bit
const int n32 = (n & ~31); const int n32 = (n & ~31);
__m256 sum0 = _mm256_setzero_ps(); __m256 sum0 = _mm256_setzero_ps();
@ -330,6 +370,45 @@ inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float
for (int i = n32; i < n; ++i) { for (int i = n32; i < n; ++i) {
sumf += x[i]*y[i]; sumf += x[i]*y[i];
} }
#elif defined(__wasm_simd128__)
// WASM 128-bit
const int n16 = (n & ~15);
v128_t sum0 = wasm_f32x4_splat(0);
v128_t sum1 = wasm_f32x4_splat(0);
v128_t sum2 = wasm_f32x4_splat(0);
v128_t sum3 = wasm_f32x4_splat(0);
v128_t x0, x1, x2, x3;
v128_t y0, y1, y2, y3;
for (int i = 0; i < n16; i += 16) {
x0 = wasm_v128_load(x + i + 0);
x1 = wasm_v128_load(x + i + 4);
x2 = wasm_v128_load(x + i + 8);
x3 = wasm_v128_load(x + i + 12);
y0 = wasm_v128_load(y + i + 0);
y1 = wasm_v128_load(y + i + 4);
y2 = wasm_v128_load(y + i + 8);
y3 = wasm_v128_load(y + i + 12);
sum0 = wasm_f32x4_add(sum0, wasm_f32x4_mul(x0, y0));
sum1 = wasm_f32x4_add(sum1, wasm_f32x4_mul(x1, y1));
sum2 = wasm_f32x4_add(sum2, wasm_f32x4_mul(x2, y2));
sum3 = wasm_f32x4_add(sum3, wasm_f32x4_mul(x3, y3));
}
sum0 = wasm_f32x4_add(sum0, sum1);
sum2 = wasm_f32x4_add(sum2, sum3);
sum0 = wasm_f32x4_add(sum0, sum2);
sumf = wasm_f32x4_extract_lane(sum0, 0) + wasm_f32x4_extract_lane(sum0, 1) + wasm_f32x4_extract_lane(sum0, 2) + wasm_f32x4_extract_lane(sum0, 3);
// leftovers
for (int i = n16; i < n; ++i) {
sumf += x[i]*y[i];
}
#else #else
// scalar // scalar
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
@ -446,7 +525,7 @@ inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t
sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]); sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
} }
#elif defined(__AVX2__) #elif defined(__AVX2__)
// AVX 256-bit (unroll 4) // AVX 256-bit
const int n32 = (n & ~31); const int n32 = (n & ~31);
__m256 sum0 = _mm256_setzero_ps(); __m256 sum0 = _mm256_setzero_ps();
@ -489,6 +568,54 @@ inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t
//GGML_ASSERT(false); //GGML_ASSERT(false);
sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]); sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
} }
#elif defined(__wasm_simd128__)
// WASM 128-bit
const int n16 = (n & ~15);
v128_t sum0 = wasm_f32x4_splat(0.0f);
v128_t sum1 = wasm_f32x4_splat(0.0f);
v128_t sum2 = wasm_f32x4_splat(0.0f);
v128_t sum3 = wasm_f32x4_splat(0.0f);
v128_t x0, x1, x2, x3;
v128_t y0, y1, y2, y3;
float tx[16];
float ty[16];
for (int i = 0; i < n16; i += 16) {
for (int k = 0; k < 16; ++k) {
tx[k] = ggml_fp16_to_fp32(x[i + k]);
ty[k] = ggml_fp16_to_fp32(y[i + k]);
}
x0 = wasm_v128_load(tx + 0);
x1 = wasm_v128_load(tx + 4);
x2 = wasm_v128_load(tx + 8);
x3 = wasm_v128_load(tx + 12);
y0 = wasm_v128_load(ty + 0);
y1 = wasm_v128_load(ty + 4);
y2 = wasm_v128_load(ty + 8);
y3 = wasm_v128_load(ty + 12);
sum0 = wasm_f32x4_add(sum0, wasm_f32x4_mul(x0, y0));
sum1 = wasm_f32x4_add(sum1, wasm_f32x4_mul(x1, y1));
sum2 = wasm_f32x4_add(sum2, wasm_f32x4_mul(x2, y2));
sum3 = wasm_f32x4_add(sum3, wasm_f32x4_mul(x3, y3));
}
sum0 = wasm_f32x4_add(sum0, sum1);
sum2 = wasm_f32x4_add(sum2, sum3);
sum0 = wasm_f32x4_add(sum0, sum2);
sumf = wasm_f32x4_extract_lane(sum0, 0) + wasm_f32x4_extract_lane(sum0, 1) + wasm_f32x4_extract_lane(sum0, 2) + wasm_f32x4_extract_lane(sum0, 3);
// leftovers
for (int i = n16; i < n; ++i) {
//GGML_ASSERT(false);
sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
}
#else #else
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]); sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
@ -535,7 +662,7 @@ inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float
y[i] += x[i]*v; y[i] += x[i]*v;
} }
#elif defined(__AVX2__) #elif defined(__AVX2__)
// AVX 256-bit (unroll 4) // AVX 256-bit
const int n32 = (n & ~31); const int n32 = (n & ~31);
const __m256 v4 = _mm256_set1_ps(v); const __m256 v4 = _mm256_set1_ps(v);
@ -569,6 +696,41 @@ inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float
for (int i = n32; i < n; ++i) { for (int i = n32; i < n; ++i) {
y[i] += x[i]*v; y[i] += x[i]*v;
} }
#elif defined(__wasm_simd128__)
// WASM SIMD 128-bit
const int n16 = (n & ~15);
const v128_t v4 = wasm_f32x4_splat(v);
v128_t x0, x1, x2, x3;
v128_t y0, y1, y2, y3;
for (int i = 0; i < n16; i += 16) {
x0 = wasm_v128_load(x + i + 0);
x1 = wasm_v128_load(x + i + 4);
x2 = wasm_v128_load(x + i + 8);
x3 = wasm_v128_load(x + i + 12);
y0 = wasm_v128_load(y + i + 0);
y1 = wasm_v128_load(y + i + 4);
y2 = wasm_v128_load(y + i + 8);
y3 = wasm_v128_load(y + i + 12);
y0 = wasm_f32x4_add(y0, wasm_f32x4_mul(x0, v4));
y1 = wasm_f32x4_add(y1, wasm_f32x4_mul(x1, v4));
y2 = wasm_f32x4_add(y2, wasm_f32x4_mul(x2, v4));
y3 = wasm_f32x4_add(y3, wasm_f32x4_mul(x3, v4));
wasm_v128_store(y + i + 0, y0);
wasm_v128_store(y + i + 4, y1);
wasm_v128_store(y + i + 8, y2);
wasm_v128_store(y + i + 12, y3);
}
// leftovers
for (int i = n16; i < n; ++i) {
y[i] += x[i]*v;
}
#else #else
// scalar // scalar
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
@ -696,6 +858,54 @@ inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, ggml_
GGML_ASSERT(false); GGML_ASSERT(false);
y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v); y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v);
} }
#elif defined(__wasm_simd128__)
// WASM SIMD 128-bit
const int n16 = (n & ~15);
const v128_t v4 = wasm_f32x4_splat(v);
v128_t x0, x1, x2, x3;
v128_t y0, y1, y2, y3;
float tx[16];
float ty[16];
for (int i = 0; i < n16; i += 16) {
for (int k = 0; k < 16; ++k) {
tx[k] = ggml_fp16_to_fp32(x[i + k]);
ty[k] = ggml_fp16_to_fp32(y[i + k]);
}
x0 = wasm_v128_load(tx + 0);
x1 = wasm_v128_load(tx + 4);
x2 = wasm_v128_load(tx + 8);
x3 = wasm_v128_load(tx + 12);
y0 = wasm_v128_load(ty + 0);
y1 = wasm_v128_load(ty + 4);
y2 = wasm_v128_load(ty + 8);
y3 = wasm_v128_load(ty + 12);
y0 = wasm_f32x4_add(y0, wasm_f32x4_mul(x0, v4));
y1 = wasm_f32x4_add(y1, wasm_f32x4_mul(x1, v4));
y2 = wasm_f32x4_add(y2, wasm_f32x4_mul(x2, v4));
y3 = wasm_f32x4_add(y3, wasm_f32x4_mul(x3, v4));
wasm_v128_store(ty + 0, y0);
wasm_v128_store(ty + 4, y1);
wasm_v128_store(ty + 8, y2);
wasm_v128_store(ty + 12, y3);
for (int k = 0; k < 16; ++k) {
y[i + k] = ggml_fp32_to_fp16(ty[k]);
}
}
// leftovers
for (int i = n16; i < n; ++i) {
GGML_ASSERT(false);
y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v);
}
#else #else
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v); y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v);
@ -931,6 +1141,7 @@ struct ggml_state {
// global state // global state
struct ggml_state g_state; struct ggml_state g_state;
atomic_int g_state_barrier = 0;
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
@ -1060,6 +1271,17 @@ int ggml_up64(int n) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
struct ggml_context * ggml_init(struct ggml_init_params params) { struct ggml_context * ggml_init(struct ggml_init_params params) {
// make this function thread safe
{
int processing = atomic_fetch_add(&g_state_barrier, 1);
while (processing > 0) {
// wait for other threads to finish
atomic_fetch_sub(&g_state_barrier, 1);
sched_yield();
processing = atomic_fetch_add(&g_state_barrier, 1);
}
}
static bool is_first_call = true; static bool is_first_call = true;
if (is_first_call) { if (is_first_call) {
const uint64_t t_start = ggml_time_us(); UNUSED(t_start); const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
@ -1103,6 +1325,9 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
if (ctx == NULL) { if (ctx == NULL) {
GGML_PRINT_DEBUG("%s: no unused context found\n", __func__); GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
atomic_fetch_sub(&g_state_barrier, 1);
return NULL; return NULL;
} }
@ -1117,10 +1342,25 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
ggml_assert_aligned(ctx->mem_buffer); ggml_assert_aligned(ctx->mem_buffer);
GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
atomic_fetch_sub(&g_state_barrier, 1);
return ctx; return ctx;
} }
void ggml_free(struct ggml_context * ctx) { void ggml_free(struct ggml_context * ctx) {
// make this function thread safe
{
int processing = atomic_fetch_add(&g_state_barrier, 1);
while (processing > 0) {
// wait for other threads to finish
atomic_fetch_sub(&g_state_barrier, 1);
sched_yield();
processing = atomic_fetch_add(&g_state_barrier, 1);
}
}
for (int i = 0; i < GGML_MAX_CONTEXTS; i++) { for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
if (&g_state.contexts[i].context == ctx) { if (&g_state.contexts[i].context == ctx) {
g_state.contexts[i].used = false; g_state.contexts[i].used = false;
@ -1132,11 +1372,15 @@ void ggml_free(struct ggml_context * ctx) {
free(ctx->mem_buffer); free(ctx->mem_buffer);
} }
atomic_fetch_sub(&g_state_barrier, 1);
return; return;
} }
} }
GGML_PRINT_DEBUG("%s: context not found\n", __func__); GGML_PRINT_DEBUG("%s: context not found\n", __func__);
atomic_fetch_sub(&g_state_barrier, 1);
} }
size_t ggml_used_mem(const struct ggml_context * ctx) { size_t ggml_used_mem(const struct ggml_context * ctx) {
@ -3852,46 +4096,44 @@ void ggml_compute_forward_mul_mat_f32(
// nb00 < nb01 - src0 is transposed // nb00 < nb01 - src0 is transposed
// compute by src0 columns // compute by src0 columns
//#ifdef GGML_USE_ACCELERATE #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
// if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
// GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src0));
// GGML_ASSERT(nb10 == sizeof(float)); GGML_ASSERT(nb10 == sizeof(float));
//
// if (params->ith != 0) return; if (params->ith != 0) return;
//
// if (params->type == GGML_TASK_INIT) { if (params->type == GGML_TASK_INIT) {
// return; return;
// } }
//
// if (params->type == GGML_TASK_FINALIZE) { if (params->type == GGML_TASK_FINALIZE) {
// return; return;
// } }
//
// float * const wdata = params->wdata; for (int i03 = 0; i03 < ne03; i03++) {
// for (int i02 = 0; i02 < ne02; i02++) {
// for (int i03 = 0; i03 < ne03; i03++) { const float * x = (float *) (src0->data);
// for (int i02 = 0; i02 < ne02; i02++) { const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
// const float * x = (float *) (src0->data);
// const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
//
// float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); // zT = y * xT
// {
// // zT = y * xT cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
// { ne11, ne01, ne10,
// cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, 1.0f, y, ne10,
// ne11, ne01, ne10, x, ne10,
// 1.0f, y, ne10, 0.0f, d, ne01);
// x, ne10, }
// 0.0f, d, ne01); }
// } }
// }
// } //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
//
// //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); return;
// }
// return; #endif
// }
//#endif
if (params->type == GGML_TASK_INIT) { if (params->type == GGML_TASK_INIT) {
if (nb01 >= nb00) { if (nb01 >= nb00) {
@ -4098,7 +4340,7 @@ void ggml_compute_forward_mul_mat_f16_f32(
// nb00 < nb01 - src0 is transposed // nb00 < nb01 - src0 is transposed
// compute by src0 columns // compute by src0 columns
#ifdef GGML_USE_ACCELERATE #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
GGML_ASSERT(nb10 == sizeof(float)); GGML_ASSERT(nb10 == sizeof(float));
@ -6654,7 +6896,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
} else { } else {
if (node->src0->type == GGML_TYPE_F16 && if (node->src0->type == GGML_TYPE_F16 &&
node->src1->type == GGML_TYPE_F32) { node->src1->type == GGML_TYPE_F32) {
#ifdef GGML_USE_ACCELERATE #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
cur = sizeof(float)*(node->src0->ne[0]*node->src0->ne[1]); cur = sizeof(float)*(node->src0->ne[0]*node->src0->ne[1]);
} else { } else {
@ -7358,7 +7600,7 @@ enum ggml_opt_result ggml_opt_adam(
{ {
const int64_t t_end_cpu = ggml_cycles(); const int64_t t_end_cpu = ggml_cycles();
GGML_PRINT_DEBUG("time iter: %5.3f s\n", (t_end_cpu - t_start_cpu)/CLOCKS_PER_SEC); GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
UNUSED(t_end_cpu); UNUSED(t_end_cpu);
const int64_t t_end_wall = ggml_time_us(); const int64_t t_end_wall = ggml_time_us();
@ -7829,3 +8071,53 @@ enum ggml_opt_result ggml_opt(
} }
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
int ggml_cpu_has_avx2(void) {
#if defined(__AVX2__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_avx512(void) {
#if defined(__AVX512F__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_neon(void) {
#if defined(__ARM_NEON__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_fp16_va(void) {
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_wasm_simd(void) {
#if defined(__wasm_simd128__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_blas(void) {
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
return 1;
#else
return 0;
#endif
}
////////////////////////////////////////////////////////////////////////////////

@ -1,31 +0,0 @@
#pragma once
#include <Windows.h>
typedef volatile LONG atomic_int;
typedef atomic_int atomic_bool;
static void atomic_store(atomic_int* ptr, LONG val) {
InterlockedExchange(ptr, val);
}
static LONG atomic_load(atomic_int* ptr) {
return InterlockedCompareExchange(ptr, 0, 0);
}
static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
return InterlockedExchangeAdd(ptr, inc);
}
static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
return atomic_fetch_add(ptr, -(dec));
}
typedef HANDLE pthread_t;
typedef DWORD thread_ret_t;
static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
out = CreateThread(NULL, 0, func, arg, 0, NULL);
return out != NULL;
}
static int pthread_join(pthread_t thread, void* unused) {
return (int) WaitForSingleObject(thread, INFINITE);
}
Loading…
Cancel
Save