t5 : initial load in ggml

pull/12/head
Georgi Gerganov 2 years ago
parent a0f92eff2d
commit 1d38a69d7c
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735

@ -7,7 +7,8 @@ import numpy
import code # tmp
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
#from transformers import AutoModelForSeq2SeqLM
from transformers import AutoTokenizer
if len(sys.argv) < 3:
print("Usage: convert-flan-t5-pt-to-ggml.py path-to-pt-model dir-output [use-f32]\n")
@ -61,6 +62,7 @@ fout.write(struct.pack("i", config["d_model"]))
fout.write(struct.pack("i", config["n_positions"]))
fout.write(struct.pack("i", config["num_heads"]))
fout.write(struct.pack("i", config["num_layers"]))
fout.write(struct.pack("i", use_f16))
# sort tokenizer.vocab by value
tokens = sorted(tokenizer.vocab.items(), key=lambda x: x[1])

@ -1,3 +1,740 @@
int main() {
#include "ggml.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
// available t5 models
enum e_model {
MODEL_UNKNOWN,
MODEL_SMALL,
MODEL_BASE,
MODEL_LARGE,
MODEL_XL,
MODEL_XXL,
};
static const size_t MB = 4*1024*1024;
static const std::map<e_model, size_t> MEM_REQ_MODEL = {
{ MODEL_SMALL, 74ull*MB },
{ MODEL_BASE, 142ull*MB },
{ MODEL_LARGE, 466ull*MB },
{ MODEL_XL, 1464ull*MB },
{ MODEL_XXL, 2952ull*MB },
};
static const std::map<e_model, size_t> MEM_REQ_MEMORY = {
{ MODEL_SMALL, 12ull*MB },
{ MODEL_BASE, 24ull*MB },
{ MODEL_LARGE, 70ull*MB },
{ MODEL_XL, 184ull*MB },
{ MODEL_XXL, 306ull*MB },
};
static const std::map<e_model, size_t> MEM_REQ_ENCODE = {
{ MODEL_SMALL, 80ull*MB },
{ MODEL_BASE, 128ull*MB },
{ MODEL_LARGE, 300ull*MB },
{ MODEL_XL, 680ull*MB },
{ MODEL_XXL, 1100ull*MB },
};
static const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = {
{ MODEL_SMALL, 104ull*MB },
{ MODEL_BASE, 138ull*MB },
{ MODEL_LARGE, 208ull*MB },
{ MODEL_XL, 280ull*MB },
{ MODEL_XXL, 354ull*MB },
};
static const std::map<e_model, size_t> MEM_REQ_DECODE = {
{ MODEL_SMALL, 200ull*MB },
{ MODEL_BASE, 202ull*MB },
{ MODEL_LARGE, 204ull*MB },
{ MODEL_XL, 206ull*MB },
{ MODEL_XXL, 208ull*MB },
};
static const std::map<e_model, size_t> MEM_REQ_DECODE_LAYER = {
{ MODEL_SMALL, 32ull*MB },
{ MODEL_BASE, 44ull*MB },
{ MODEL_LARGE, 64ull*MB },
{ MODEL_XL, 84ull*MB },
{ MODEL_XXL, 110ull*MB },
};
struct t5_vocab {
using id = int32_t;
using token = std::string;
int n_vocab = 32128;
std::map<token, id> token_to_id;
std::map<id, token> id_to_token;
};
// default hparams (FLAN-T5 Small)
struct t5_hparams {
int32_t n_vocab = 32128;
int32_t d_ff = 1024;
int32_t d_kv = 64;
int32_t d_model = 512;
int32_t n_positions = 512;
int32_t n_head = 6;
int32_t n_layer = 8;
int32_t f16 = 1;
};
struct t5_layer_encoder {
// encoder.block.*.layer.0.SelfAttention
struct ggml_tensor * attn_q;
struct ggml_tensor * attn_k;
struct ggml_tensor * attn_v;
struct ggml_tensor * attn_o;
// encoder.blocks.*.layer.0.layer_norm
struct ggml_tensor * ln_0;
// encoder.blocks.*.layer.1.DenseReluDense
struct ggml_tensor * wi_0;
struct ggml_tensor * wi_1;
struct ggml_tensor * wo;
// encoder.blocks.*.layer.1.layer_norm
struct ggml_tensor * ln_1;
};
struct t5_layer_decoder {
// decoder.block.*.layer.0.SelfAttention
struct ggml_tensor * attn_q;
struct ggml_tensor * attn_k;
struct ggml_tensor * attn_v;
struct ggml_tensor * attn_o;
// decoder.blocks.*.layer.0.layer_norm
struct ggml_tensor * ln_0;
// decoder.blocks.*.layer.1.EncDecAttention
struct ggml_tensor * cross_attn_q;
struct ggml_tensor * cross_attn_k;
struct ggml_tensor * cross_attn_v;
struct ggml_tensor * cross_attn_o;
// decoder.blocks.*.layer.1.layer_norm
struct ggml_tensor * ln_1;
// decoder.blocks.*.layer.1.DenseReluDense
struct ggml_tensor * wi_0;
struct ggml_tensor * wi_1;
struct ggml_tensor * wo;
// decoder.blocks.*.layer.1.layer_norm
struct ggml_tensor * ln_2;
};
struct t5_model {
e_model type = MODEL_UNKNOWN;
t5_hparams hparams;
// shared
struct ggml_tensor * shared;
// encoder.embed_tokens
struct ggml_tensor * e_et;
// encoder.final_layer_norm
struct ggml_tensor * e_ln;
// encoder.block.0.layer.0.SelfAttention.relative_attention_bias
struct ggml_tensor * e_rab;
// decoder.embed_tokens
struct ggml_tensor * d_et;
// decoder.final_layer_norm
struct ggml_tensor * d_ln;
// decoder.block.0.layer.0.SelfAttention.relative_attention_bias
struct ggml_tensor * d_rab;
// lm_head
struct ggml_tensor * lm_head;
std::vector<t5_layer_encoder> layers_encoder;
std::vector<t5_layer_decoder> layers_decoder;
// context
struct ggml_context * ctx;
struct ggml_context * ctx_mem;
// tensors
int n_loaded;
std::map<std::string, struct ggml_tensor *> tensors;
};
struct t5_context {
int64_t t_load_us = 0;
int64_t t_sample_us = 0;
int64_t t_encode_us = 0;
int64_t t_decode_us = 0;
int64_t t_start_us = 0;
std::vector<uint8_t> buf_model;
std::vector<uint8_t> buf_memory;
std::vector<uint8_t> buf_compute;
std::vector<uint8_t> buf_compute_layer;
t5_model model;
t5_vocab vocab;
std::vector<float> probs;
std::vector<float> logits;
};
template<typename T>
static void read_safe(std::ifstream& fin, T& dest) {
fin.read((char*)& dest, sizeof(T));
}
static bool t5_model_load(const std::string & fname, t5_context & wctx) {
fprintf(stderr, "%s: loading model from '%s'\n", __func__, fname.c_str());
auto & model = wctx.model;
auto & vocab = wctx.vocab;
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
// verify magic
{
uint32_t magic;
read_safe(fin, magic);
if (magic != 0x67676d6c) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return false;
}
}
//load hparams
{
auto & hparams = model.hparams;
read_safe(fin, hparams.n_vocab);
read_safe(fin, hparams.d_ff);
read_safe(fin, hparams.d_kv);
read_safe(fin, hparams.d_model);
read_safe(fin, hparams.n_positions);
read_safe(fin, hparams.n_head);
read_safe(fin, hparams.n_layer);
read_safe(fin, hparams.f16);
assert(hparams.n_text_state == hparams.n_audio_state);
if (hparams.n_layer == 8) {
model.type = e_model::MODEL_SMALL;
}
if (hparams.n_layer == 12) {
model.type = e_model::MODEL_BASE;
}
if (hparams.n_layer == 24 && hparams.n_head == 16) {
model.type = e_model::MODEL_LARGE;
}
if (hparams.n_layer == 24 && hparams.n_head == 32) {
model.type = e_model::MODEL_XL;
}
if (hparams.n_layer == 24 && hparams.n_head == 64) {
model.type = e_model::MODEL_XXL;
}
fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
fprintf(stderr, "%s: d_ff = %d\n", __func__, hparams.d_ff);
fprintf(stderr, "%s: d_kv = %d\n", __func__, hparams.d_kv);
fprintf(stderr, "%s: d_model = %d\n", __func__, hparams.d_model);
fprintf(stderr, "%s: n_positions = %d\n", __func__, hparams.n_positions);
fprintf(stderr, "%s: n_head = %d\n", __func__, hparams.n_head);
fprintf(stderr, "%s: n_layer = %d\n", __func__, hparams.n_layer);
fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16);
fprintf(stderr, "%s: type = %d\n", __func__, model.type);
wctx.buf_model.resize(MEM_REQ_MODEL.at(model.type));
wctx.buf_memory.resize(MEM_REQ_MEMORY.at(model.type));
wctx.buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type)));
wctx.buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type)));
}
// load vocab
{
int32_t n_vocab = 0;
read_safe(fin, n_vocab);
//if (n_vocab != model.hparams.n_vocab) {
// fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
// __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
// return false;
//}
std::string word;
std::vector<char> tmp;
tmp.reserve(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
read_safe(fin, len);
if (len > 0) {
tmp.resize(len);
fin.read(&tmp[0], tmp.size()); // read to buffer
word.assign(&tmp[0], tmp.size());
} else {
// seems like we have an empty-string token in multi-language models (i = 50256)
//fprintf(stderr, "%s: warning: empty-string token in vocab, i = %d\n", __func__, i);
word = "";
}
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
//printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
}
vocab.n_vocab = model.hparams.n_vocab;
if (n_vocab < model.hparams.n_vocab) {
fprintf(stderr, "%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab);
for (int i = n_vocab; i < model.hparams.n_vocab; i++) {
word = "[_extra_token_" + std::to_string(i) + "]";
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
wctx.logits.reserve(vocab.n_vocab*model.hparams.d_model);
wctx.probs.reserve(vocab.n_vocab*model.hparams.d_model);
}
{
// this is the total memory required to run the inference
const size_t mem_required =
wctx.buf_model.size() +
wctx.buf_memory.size() +
wctx.buf_compute.size() +
wctx.buf_compute_layer.size();
fprintf(stderr, "%s: mem_required = %7.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
}
// for the big tensors, we have the option to store the data in 16-bit floats
// in order to save memory and also to speed up the computation
const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
size_t ctx_size = 0;
{
const auto & hparams = model.hparams;
const int n_vocab = hparams.n_vocab;
const int d_ff = hparams.d_ff;
const int d_kv = hparams.d_kv;
const int d_model = hparams.d_model;
const int n_head = hparams.n_head;
const int n_layer = hparams.n_layer;
ctx_size += n_vocab*d_model*ggml_type_size(wtype); // shared;
ctx_size += n_vocab*d_model*ggml_type_size(wtype); // lm_head;
// encoder
{
ctx_size += n_vocab*d_model*ggml_type_size(wtype); // e_et;
ctx_size += d_model*ggml_type_size(GGML_TYPE_F32); // e_ln
ctx_size += 32*n_head*ggml_type_size(wtype); // e_rab
}
// decoder
{
ctx_size += n_vocab*d_model*ggml_type_size(wtype); // d_et;
ctx_size += d_model*ggml_type_size(GGML_TYPE_F32); // d_ln
ctx_size += 32*n_head*ggml_type_size(wtype); // d_rab
}
// encoder layers
{
ctx_size += n_layer*(d_kv*n_head*d_model*ggml_type_size(wtype)); // attn_q
ctx_size += n_layer*(d_kv*n_head*d_model*ggml_type_size(wtype)); // attn_k
ctx_size += n_layer*(d_kv*n_head*d_model*ggml_type_size(wtype)); // attn_v
ctx_size += n_layer*(d_kv*n_head*d_model*ggml_type_size(wtype)); // attn_o
ctx_size += n_layer*(d_model*ggml_type_size(GGML_TYPE_F32)); // ln_0
ctx_size += n_layer*(d_ff*d_model*ggml_type_size(wtype)); // wi_0
ctx_size += n_layer*(d_ff*d_model*ggml_type_size(wtype)); // wi_1
ctx_size += n_layer*(d_ff*d_model*ggml_type_size(wtype)); // wo
ctx_size += n_layer*(d_model*ggml_type_size(GGML_TYPE_F32)); // ln_1
}
// decoder layers
{
ctx_size += n_layer*(d_kv*n_head*d_model*ggml_type_size(wtype)); // attn_q
ctx_size += n_layer*(d_kv*n_head*d_model*ggml_type_size(wtype)); // attn_k
ctx_size += n_layer*(d_kv*n_head*d_model*ggml_type_size(wtype)); // attn_v
ctx_size += n_layer*(d_kv*n_head*d_model*ggml_type_size(wtype)); // attn_o
ctx_size += n_layer*(d_model*ggml_type_size(GGML_TYPE_F32)); // ln_0
ctx_size += n_layer*(d_kv*n_head*d_model*ggml_type_size(wtype)); // cross_attn_q
ctx_size += n_layer*(d_kv*n_head*d_model*ggml_type_size(wtype)); // cross_attn_k
ctx_size += n_layer*(d_kv*n_head*d_model*ggml_type_size(wtype)); // cross_attn_v
ctx_size += n_layer*(d_kv*n_head*d_model*ggml_type_size(wtype)); // cross_attn_o
ctx_size += n_layer*(d_model*ggml_type_size(GGML_TYPE_F32)); // ln_1
ctx_size += n_layer*(d_ff*d_model*ggml_type_size(wtype)); // wi_0
ctx_size += n_layer*(d_ff*d_model*ggml_type_size(wtype)); // wi_1
ctx_size += n_layer*(d_ff*d_model*ggml_type_size(wtype)); // wo
ctx_size += n_layer*(d_model*ggml_type_size(GGML_TYPE_F32)); // ln_2
}
ctx_size += (15 + 9*n_layer + 14*n_layer)*256; // object overhead
fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
}
// create the ggml context
{
struct ggml_init_params params;
params.mem_size = wctx.buf_model.size();
params.mem_buffer = wctx.buf_model.data();
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights
{
auto & ctx = model.ctx;
const auto & hparams = model.hparams;
const int n_vocab = hparams.n_vocab;
const int d_ff = hparams.d_ff;
const int d_kv = hparams.d_kv;
const int d_model = hparams.d_model;
const int n_head = hparams.n_head;
const int n_layer = hparams.n_layer;
model.layers_encoder.resize(n_layer);
model.layers_decoder.resize(n_layer);
// global
{
model.shared = ggml_new_tensor_2d(ctx, wtype, d_model, n_vocab);
model.lm_head = ggml_new_tensor_2d(ctx, wtype, d_model, n_vocab);
model.tensors["shared.weight"] = model.shared;
model.tensors["lm_head.weight"] = model.lm_head;
}
// encoder
{
model.e_et = ggml_new_tensor_2d(ctx, wtype, d_model, n_vocab);
model.e_ln = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, d_model);
model.e_rab = ggml_new_tensor_2d(ctx, wtype, n_head, 32);
// map by name
model.tensors["encoder.embed_tokens.weight"] = model.e_et;
model.tensors["encoder.final_layer_norm.weight"] = model.e_ln;
model.tensors["encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = model.e_rab;
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers_encoder[i];
layer.attn_q = ggml_new_tensor_2d(ctx, wtype, d_model, d_kv*n_head);
layer.attn_k = ggml_new_tensor_2d(ctx, wtype, d_model, d_kv*n_head);
layer.attn_v = ggml_new_tensor_2d(ctx, wtype, d_model, d_kv*n_head);
layer.attn_o = ggml_new_tensor_2d(ctx, wtype, d_kv*n_head, d_model);
layer.ln_0 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, d_model);
layer.wi_0 = ggml_new_tensor_2d(ctx, wtype, d_model, d_ff);
layer.wi_1 = ggml_new_tensor_2d(ctx, wtype, d_model, d_ff);
layer.wo = ggml_new_tensor_2d(ctx, wtype, d_ff, d_model);
layer.ln_1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, d_model);
// map by name
model.tensors["encoder.block." + std::to_string(i) + ".layer.0.SelfAttention.q.weight"] = layer.attn_q;
model.tensors["encoder.block." + std::to_string(i) + ".layer.0.SelfAttention.k.weight"] = layer.attn_k;
model.tensors["encoder.block." + std::to_string(i) + ".layer.0.SelfAttention.v.weight"] = layer.attn_v;
model.tensors["encoder.block." + std::to_string(i) + ".layer.0.SelfAttention.o.weight"] = layer.attn_o;
model.tensors["encoder.block." + std::to_string(i) + ".layer.0.layer_norm.weight"] = layer.ln_0;
model.tensors["encoder.block." + std::to_string(i) + ".layer.1.DenseReluDense.wi_0.weight"] = layer.wi_0;
model.tensors["encoder.block." + std::to_string(i) + ".layer.1.DenseReluDense.wi_1.weight"] = layer.wi_1;
model.tensors["encoder.block." + std::to_string(i) + ".layer.1.DenseReluDense.wo.weight"] = layer.wo;
model.tensors["encoder.block." + std::to_string(i) + ".layer.1.layer_norm.weight"] = layer.ln_1;
}
}
// decoder
{
model.d_et = ggml_new_tensor_2d(ctx, wtype, d_model, n_vocab);
model.d_ln = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, d_model);
model.d_rab = ggml_new_tensor_2d(ctx, wtype, n_head, 32);
// map by name
model.tensors["decoder.embed_tokens.weight"] = model.d_et;
model.tensors["decoder.final_layer_norm.weight"] = model.d_ln;
model.tensors["decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = model.d_rab;
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers_decoder[i];
layer.attn_q = ggml_new_tensor_2d(ctx, wtype, d_model, d_kv*n_head);
layer.attn_k = ggml_new_tensor_2d(ctx, wtype, d_model, d_kv*n_head);
layer.attn_v = ggml_new_tensor_2d(ctx, wtype, d_model, d_kv*n_head);
layer.attn_o = ggml_new_tensor_2d(ctx, wtype, d_kv*n_head, d_model);
layer.ln_0 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, d_model);
layer.cross_attn_q = ggml_new_tensor_2d(ctx, wtype, d_model, d_kv*n_head);
layer.cross_attn_k = ggml_new_tensor_2d(ctx, wtype, d_model, d_kv*n_head);
layer.cross_attn_v = ggml_new_tensor_2d(ctx, wtype, d_model, d_kv*n_head);
layer.cross_attn_o = ggml_new_tensor_2d(ctx, wtype, d_kv*n_head, d_model);
layer.ln_1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, d_model);
layer.wi_0 = ggml_new_tensor_2d(ctx, wtype, d_model, d_ff);
layer.wi_1 = ggml_new_tensor_2d(ctx, wtype, d_model, d_ff);
layer.wo = ggml_new_tensor_2d(ctx, wtype, d_ff, d_model);
layer.ln_2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, d_model);
// map by name
model.tensors["decoder.block." + std::to_string(i) + ".layer.0.SelfAttention.q.weight"] = layer.attn_q;
model.tensors["decoder.block." + std::to_string(i) + ".layer.0.SelfAttention.k.weight"] = layer.attn_k;
model.tensors["decoder.block." + std::to_string(i) + ".layer.0.SelfAttention.v.weight"] = layer.attn_v;
model.tensors["decoder.block." + std::to_string(i) + ".layer.0.SelfAttention.o.weight"] = layer.attn_o;
model.tensors["decoder.block." + std::to_string(i) + ".layer.0.layer_norm.weight"] = layer.ln_0;
model.tensors["decoder.block." + std::to_string(i) + ".layer.1.EncDecAttention.q.weight"] = layer.cross_attn_q;
model.tensors["decoder.block." + std::to_string(i) + ".layer.1.EncDecAttention.k.weight"] = layer.cross_attn_k;
model.tensors["decoder.block." + std::to_string(i) + ".layer.1.EncDecAttention.v.weight"] = layer.cross_attn_v;
model.tensors["decoder.block." + std::to_string(i) + ".layer.1.EncDecAttention.o.weight"] = layer.cross_attn_o;
model.tensors["decoder.block." + std::to_string(i) + ".layer.1.layer_norm.weight"] = layer.ln_1;
model.tensors["decoder.block." + std::to_string(i) + ".layer.2.DenseReluDense.wi_0.weight"] = layer.wi_0;
model.tensors["decoder.block." + std::to_string(i) + ".layer.2.DenseReluDense.wi_1.weight"] = layer.wi_1;
model.tensors["decoder.block." + std::to_string(i) + ".layer.2.DenseReluDense.wo.weight"] = layer.wo;
model.tensors["decoder.block." + std::to_string(i) + ".layer.2.layer_norm.weight"] = layer.ln_2;
}
}
}
// create the ggml memory context
{
struct ggml_init_params params;
params.mem_size = wctx.buf_memory.size();
params.mem_buffer = wctx.buf_memory.data();
model.ctx_mem = ggml_init(params);
if (!model.ctx_mem) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// key + value memory
//{
// auto & ctx = model.ctx_mem;
// const auto & hparams = model.hparams;
// const int n_text_state = hparams.n_text_state;
// const int n_text_layer = hparams.n_text_layer;
// const int n_text_ctx = hparams.n_text_ctx;
// // key/value memory for the self-attention layer
// {
// const int n_mem = n_text_layer*n_text_ctx;
// const int n_elements = n_text_state*n_mem;
// model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
// model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
// }
// // key/value memory for the cross-attention layer
// {
// const int n_audio_ctx = hparams.n_audio_ctx;
// const int n_mem = n_text_layer*n_audio_ctx;
// const int n_elements = n_text_state*n_mem;
// model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
// model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
// }
// const size_t memory_size =
// ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) +
// ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
// fprintf(stderr, "%s: memory size = %7.2f MB\n", __func__, memory_size/1024.0/1024.0);
//}
// load weights
{
size_t total_size = 0;
model.n_loaded = 0;
while (true) {
int32_t n_dims;
int32_t length;
int32_t ftype;
read_safe(fin, n_dims);
read_safe(fin, length);
read_safe(fin, ftype);
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[3] = { 1, 1, 1 };
for (int i = 0; i < n_dims; ++i) {
read_safe(fin, ne[i]);
nelements *= ne[i];
}
std::string name;
std::vector<char> tmp(length); // create a buffer
fin.read(&tmp[0], tmp.size()); // read to buffer
name.assign(&tmp[0], tmp.size());
if (model.tensors.find(name) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
return false;
}
auto tensor = model.tensors[name.data()];
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) {
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n",
__func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]);
return false;
}
const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
if (nelements*bpe != ggml_nbytes(tensor)) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
return false;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
printf("%48s - [%5d, %5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ne[2], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
total_size += ggml_nbytes(tensor);
model.n_loaded++;
}
fprintf(stderr, "%s: model size = %7.2f MB\n", __func__, total_size/1024.0/1024.0);
if (model.n_loaded == 0) {
fprintf(stderr, "%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__);
} else if (model.n_loaded != (int) model.tensors.size()) {
fprintf(stderr, "%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), model.n_loaded);
return false;
}
}
fin.close();
return true;
}
struct t5_context * t5_init(const char * path_model) {
ggml_time_init();
t5_context * ctx = new t5_context;
const int64_t t_start_us = ggml_time_us();
ctx->t_start_us = t_start_us;
if (!t5_model_load(path_model, *ctx)) {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model);
delete ctx;
return nullptr;
}
ctx->t_load_us = ggml_time_us() - t_start_us;
return ctx;
}
void t5_free(struct t5_context * ctx) {
if (ctx) {
if (ctx->model.ctx) {
ggml_free(ctx->model.ctx);
}
if (ctx->model.ctx_mem) {
ggml_free(ctx->model.ctx_mem);
}
delete ctx;
}
}
int main(int argc, char ** argv) {
if (argc < 2) {
fprintf(stderr, "usage: %s <model>\n", argv[0]);
return -1;
}
const char * path_model = argv[1];
t5_context * ctx = t5_init(path_model);
if (!ctx) {
fprintf(stderr, "%s: failed to initialize T5 context\n", __func__);
return -1;
}
fprintf(stderr, "%s: model loaded in %7.2f ms\n", __func__, ctx->t_load_us/1000.0);
t5_free(ctx);
return 0;
}

Loading…
Cancel
Save