|
|
@ -71,13 +71,26 @@ conda activate inpainting
|
|
|
|
|
|
|
|
|
|
|
|
1. Training:
|
|
|
|
1. Training:
|
|
|
|
* Our codes are built upon distributed training with Pytorch.
|
|
|
|
* Our codes are built upon distributed training with Pytorch.
|
|
|
|
* Run `python train.py `.
|
|
|
|
* Run
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
cd src
|
|
|
|
|
|
|
|
python train.py
|
|
|
|
|
|
|
|
```
|
|
|
|
2. Resume training:
|
|
|
|
2. Resume training:
|
|
|
|
* Run `python train.py --resume `.
|
|
|
|
```
|
|
|
|
|
|
|
|
cd src
|
|
|
|
|
|
|
|
python train.py --resume
|
|
|
|
|
|
|
|
```
|
|
|
|
3. Testing:
|
|
|
|
3. Testing:
|
|
|
|
* Run `python test.py --pre_train [path to pretrained model] `.
|
|
|
|
```
|
|
|
|
|
|
|
|
cd src
|
|
|
|
|
|
|
|
python test.py --pre_train [path to pretrained model]
|
|
|
|
|
|
|
|
```
|
|
|
|
4. Evaluating:
|
|
|
|
4. Evaluating:
|
|
|
|
* Run `python eval.py --real_dir [ground truths] --fake_dir [inpainting results] --metric mae psnr ssim fid`
|
|
|
|
```
|
|
|
|
|
|
|
|
cd src
|
|
|
|
|
|
|
|
python eval.py --real_dir [ground truths] --fake_dir [inpainting results] --metric mae psnr ssim fid
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
<!-- ------------------------------------------------------------------- -->
|
|
|
|
<!-- ------------------------------------------------------------------- -->
|
|
|
|
## Pretrained models
|
|
|
|
## Pretrained models
|
|
|
@ -90,10 +103,15 @@ Download the model dirs and put it under `experiments/`
|
|
|
|
<!-- ------------------------------------------------------------------- -->
|
|
|
|
<!-- ------------------------------------------------------------------- -->
|
|
|
|
## Demo
|
|
|
|
## Demo
|
|
|
|
|
|
|
|
|
|
|
|
1. Run by `python demo.py --dir_image [folder to images] --pre_train [folder to model] --painter [bbox|freeform]`
|
|
|
|
1. Download the pre-trained model parameters and put it under `experiments/`
|
|
|
|
2. Press '+' or '-' to control the thickness of painter.
|
|
|
|
2. Run by
|
|
|
|
3. Press 'r' to reset mask; 'k' to keep existing modifications; 's' to save results.
|
|
|
|
```
|
|
|
|
4. Press space to perform inpainting; 'n' to move to next image; 'Esc' to quit demo.
|
|
|
|
cd src
|
|
|
|
|
|
|
|
python demo.py --dir_image [folder to images] --pre_train [path to pre_trained model] --painter [bbox|freeform]
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
3. Press '+' or '-' to control the thickness of painter.
|
|
|
|
|
|
|
|
4. Press 'r' to reset mask; 'k' to keep existing modifications; 's' to save results.
|
|
|
|
|
|
|
|
5. Press space to perform inpainting; 'n' to move to next image; 'Esc' to quit demo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
![face](https://github.com/researchmm/AOT-GAN-for-Inpainting/blob/master/docs/face.gif?raw=true)
|
|
|
|
![face](https://github.com/researchmm/AOT-GAN-for-Inpainting/blob/master/docs/face.gif?raw=true)
|
|
|
|