656 lines
22 KiB
656 lines
22 KiB
// Voice assistant example
|
|
//
|
|
// Speak short text commands to the microphone.
|
|
// This program will detect your voice command and convert them to text.
|
|
//
|
|
// ref: https://github.com/ggerganov/whisper.cpp/issues/171
|
|
//
|
|
|
|
#include "whisper.h"
|
|
|
|
#include <SDL.h>
|
|
#include <SDL_audio.h>
|
|
|
|
#include <cassert>
|
|
#include <cstdio>
|
|
#include <fstream>
|
|
#include <mutex>
|
|
#include <regex>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <vector>
|
|
|
|
// command-line parameters
|
|
struct whisper_params {
|
|
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
|
int32_t prompt_ms = 5000;
|
|
int32_t command_ms = 4000;
|
|
int32_t capture_id = -1;
|
|
int32_t max_tokens = 32;
|
|
int32_t audio_ctx = 0;
|
|
|
|
float vad_thold = 0.6f;
|
|
float freq_thold = 100.0f;
|
|
|
|
bool speed_up = false;
|
|
bool translate = false;
|
|
bool no_context = true;
|
|
bool print_special = false;
|
|
bool print_energy = false;
|
|
bool no_timestamps = true;
|
|
|
|
std::string language = "en";
|
|
std::string model = "models/ggml-base.en.bin";
|
|
std::string fname_out = "";
|
|
};
|
|
|
|
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
|
|
|
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
|
for (int i = 1; i < argc; i++) {
|
|
std::string arg = argv[i];
|
|
|
|
if (arg == "-h" || arg == "--help") {
|
|
whisper_print_usage(argc, argv, params);
|
|
exit(0);
|
|
}
|
|
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
|
else if (arg == "-pms" || arg == "--prompt-ms") { params.prompt_ms = std::stoi(argv[++i]); }
|
|
else if (arg == "-cms" || arg == "--command-ms") { params.command_ms = std::stoi(argv[++i]); }
|
|
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
|
|
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
|
|
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
|
|
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
|
|
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
|
|
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
|
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
|
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
|
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
|
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
|
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
|
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
|
else {
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
whisper_print_usage(argc, argv, params);
|
|
exit(0);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void whisper_print_usage(int argc, char ** argv, const whisper_params & params) {
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "options:\n");
|
|
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
|
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
|
fprintf(stderr, " -pms N, --prompt-ms N [%-7d] prompt duration in milliseconds\n", params.prompt_ms);
|
|
fprintf(stderr, " -cms N, --command-ms N [%-7d] command duration in milliseconds\n", params.command_ms);
|
|
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
|
|
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
|
|
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
|
|
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
|
|
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
|
|
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
|
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
|
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
|
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
|
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
|
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
|
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
//
|
|
// SDL Audio capture
|
|
//
|
|
|
|
class audio_async {
|
|
public:
|
|
audio_async(int len_ms);
|
|
~audio_async();
|
|
|
|
bool init(int capture_id, int sample_rate);
|
|
|
|
// start capturing audio via the provided SDL callback
|
|
// keep last len_ms seconds of audio in a circular buffer
|
|
bool resume();
|
|
bool pause();
|
|
bool clear();
|
|
|
|
// callback to be called by SDL
|
|
void callback(uint8_t * stream, int len);
|
|
|
|
// get audio data from the circular buffer
|
|
void get(int ms, std::vector<float> & audio);
|
|
|
|
private:
|
|
SDL_AudioDeviceID m_dev_id_in = 0;
|
|
|
|
int m_len_ms = 0;
|
|
int m_sample_rate = 0;
|
|
|
|
bool m_running = false;
|
|
std::mutex m_mutex;
|
|
|
|
std::vector<float> m_audio;
|
|
std::vector<float> m_audio_new;
|
|
size_t m_audio_pos = 0;
|
|
size_t m_audio_len = 0;
|
|
};
|
|
|
|
audio_async::audio_async(int len_ms) {
|
|
m_len_ms = len_ms;
|
|
}
|
|
|
|
audio_async::~audio_async() {
|
|
if (m_dev_id_in) {
|
|
SDL_CloseAudioDevice(m_dev_id_in);
|
|
}
|
|
}
|
|
|
|
bool audio_async::init(int capture_id, int sample_rate) {
|
|
SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO);
|
|
|
|
if (SDL_Init(SDL_INIT_AUDIO) < 0) {
|
|
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError());
|
|
return false;
|
|
}
|
|
|
|
SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE);
|
|
|
|
{
|
|
int nDevices = SDL_GetNumAudioDevices(SDL_TRUE);
|
|
fprintf(stderr, "%s: found %d capture devices:\n", __func__, nDevices);
|
|
for (int i = 0; i < nDevices; i++) {
|
|
fprintf(stderr, "%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE));
|
|
}
|
|
}
|
|
|
|
SDL_AudioSpec capture_spec_requested;
|
|
SDL_AudioSpec capture_spec_obtained;
|
|
|
|
SDL_zero(capture_spec_requested);
|
|
SDL_zero(capture_spec_obtained);
|
|
|
|
capture_spec_requested.freq = sample_rate;
|
|
capture_spec_requested.format = AUDIO_F32;
|
|
capture_spec_requested.channels = 1;
|
|
capture_spec_requested.samples = 1024;
|
|
capture_spec_requested.callback = [](void * userdata, uint8_t * stream, int len) {
|
|
audio_async * audio = (audio_async *) userdata;
|
|
audio->callback(stream, len);
|
|
};
|
|
capture_spec_requested.userdata = this;
|
|
|
|
if (capture_id >= 0) {
|
|
fprintf(stderr, "%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE));
|
|
m_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
|
} else {
|
|
fprintf(stderr, "%s: attempt to open default capture device ...\n", __func__);
|
|
m_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
|
}
|
|
|
|
if (!m_dev_id_in) {
|
|
fprintf(stderr, "%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError());
|
|
m_dev_id_in = 0;
|
|
|
|
return false;
|
|
} else {
|
|
fprintf(stderr, "%s: obtained spec for input device (SDL Id = %d):\n", __func__, m_dev_id_in);
|
|
fprintf(stderr, "%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq);
|
|
fprintf(stderr, "%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format,
|
|
capture_spec_requested.format);
|
|
fprintf(stderr, "%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels,
|
|
capture_spec_requested.channels);
|
|
fprintf(stderr, "%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples);
|
|
}
|
|
|
|
m_sample_rate = capture_spec_obtained.freq;
|
|
|
|
m_audio.resize((m_sample_rate*m_len_ms)/1000);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool audio_async::resume() {
|
|
if (!m_dev_id_in) {
|
|
fprintf(stderr, "%s: no audio device to resume!\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
if (m_running) {
|
|
fprintf(stderr, "%s: already running!\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
SDL_PauseAudioDevice(m_dev_id_in, 0);
|
|
|
|
m_running = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool audio_async::pause() {
|
|
if (!m_dev_id_in) {
|
|
fprintf(stderr, "%s: no audio device to pause!\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
if (!m_running) {
|
|
fprintf(stderr, "%s: already paused!\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
SDL_PauseAudioDevice(m_dev_id_in, 1);
|
|
|
|
m_running = false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool audio_async::clear() {
|
|
if (!m_dev_id_in) {
|
|
fprintf(stderr, "%s: no audio device to clear!\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
if (!m_running) {
|
|
fprintf(stderr, "%s: not running!\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
{
|
|
std::lock_guard<std::mutex> lock(m_mutex);
|
|
|
|
m_audio_pos = 0;
|
|
m_audio_len = 0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// callback to be called by SDL
|
|
void audio_async::callback(uint8_t * stream, int len) {
|
|
if (!m_running) {
|
|
return;
|
|
}
|
|
|
|
const size_t n_samples = len / sizeof(float);
|
|
|
|
m_audio_new.resize(n_samples);
|
|
memcpy(m_audio_new.data(), stream, n_samples * sizeof(float));
|
|
|
|
//fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len);
|
|
|
|
{
|
|
std::lock_guard<std::mutex> lock(m_mutex);
|
|
|
|
if (m_audio_pos + n_samples > m_audio.size()) {
|
|
const size_t n0 = m_audio.size() - m_audio_pos;
|
|
|
|
memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float));
|
|
memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float));
|
|
|
|
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
|
m_audio_len = m_audio.size();
|
|
} else {
|
|
memcpy(&m_audio[m_audio_pos], stream, n_samples * sizeof(float));
|
|
|
|
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
|
m_audio_len = std::min(m_audio_len + n_samples, m_audio.size());
|
|
}
|
|
}
|
|
}
|
|
|
|
void audio_async::get(int ms, std::vector<float> & result) {
|
|
if (!m_dev_id_in) {
|
|
fprintf(stderr, "%s: no audio device to get audio from!\n", __func__);
|
|
return;
|
|
}
|
|
|
|
if (!m_running) {
|
|
fprintf(stderr, "%s: not running!\n", __func__);
|
|
return;
|
|
}
|
|
|
|
result.clear();
|
|
|
|
{
|
|
std::lock_guard<std::mutex> lock(m_mutex);
|
|
|
|
if (ms <= 0) {
|
|
ms = m_len_ms;
|
|
}
|
|
|
|
size_t n_samples = (m_sample_rate * ms) / 1000;
|
|
if (n_samples > m_audio_len) {
|
|
n_samples = m_audio_len;
|
|
}
|
|
|
|
result.resize(n_samples);
|
|
|
|
int s0 = m_audio_pos - n_samples;
|
|
if (s0 < 0) {
|
|
s0 += m_audio.size();
|
|
}
|
|
|
|
if (s0 + n_samples > m_audio.size()) {
|
|
const size_t n0 = m_audio.size() - s0;
|
|
|
|
memcpy(result.data(), &m_audio[s0], n0 * sizeof(float));
|
|
memcpy(&result[n0], &m_audio[0], (n_samples - n0) * sizeof(float));
|
|
} else {
|
|
memcpy(result.data(), &m_audio[s0], n_samples * sizeof(float));
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////////
|
|
|
|
std::string trim(const std::string & s) {
|
|
std::regex e("^\\s+|\\s+$");
|
|
return std::regex_replace(s, e, "");
|
|
}
|
|
|
|
void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
|
|
const float rc = 1.0f / (2.0f * M_PI * cutoff);
|
|
const float dt = 1.0f / sample_rate;
|
|
const float alpha = dt / (rc + dt);
|
|
|
|
float y = data[0];
|
|
|
|
for (size_t i = 1; i < data.size(); i++) {
|
|
y = alpha * (y + data[i] - data[i - 1]);
|
|
data[i] = y;
|
|
}
|
|
}
|
|
|
|
bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {
|
|
const int n_samples = pcmf32.size();
|
|
const int n_samples_last = (sample_rate * last_ms) / 1000;
|
|
|
|
if (n_samples_last >= n_samples) {
|
|
// not enough samples - assume no speech
|
|
return false;
|
|
}
|
|
|
|
if (freq_thold > 0.0f) {
|
|
high_pass_filter(pcmf32, freq_thold, sample_rate);
|
|
}
|
|
|
|
float energy_all = 0.0f;
|
|
float energy_last = 0.0f;
|
|
|
|
for (size_t i = 0; i < n_samples; i++) {
|
|
energy_all += fabsf(pcmf32[i]);
|
|
|
|
if (i >= n_samples - n_samples_last) {
|
|
energy_last += fabsf(pcmf32[i]);
|
|
}
|
|
}
|
|
|
|
energy_all /= n_samples;
|
|
energy_last /= n_samples_last;
|
|
|
|
if (verbose) {
|
|
fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);
|
|
}
|
|
|
|
if (energy_last > vad_thold*energy_all) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
|
|
const auto t_start = std::chrono::high_resolution_clock::now();
|
|
|
|
prob = 0.0f;
|
|
t_ms = 0;
|
|
|
|
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
|
|
|
wparams.print_progress = false;
|
|
wparams.print_special = params.print_special;
|
|
wparams.print_realtime = false;
|
|
wparams.print_timestamps = !params.no_timestamps;
|
|
wparams.translate = params.translate;
|
|
wparams.no_context = true;
|
|
wparams.single_segment = true;
|
|
wparams.max_tokens = params.max_tokens;
|
|
wparams.language = params.language.c_str();
|
|
wparams.n_threads = params.n_threads;
|
|
|
|
wparams.audio_ctx = params.audio_ctx;
|
|
wparams.speed_up = params.speed_up;
|
|
|
|
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
|
return "";
|
|
}
|
|
|
|
int prob_n = 0;
|
|
std::string result;
|
|
|
|
const int n_segments = whisper_full_n_segments(ctx);
|
|
for (int i = 0; i < n_segments; ++i) {
|
|
const char * text = whisper_full_get_segment_text(ctx, i);
|
|
|
|
result += text;
|
|
|
|
const int n_tokens = whisper_full_n_tokens(ctx, i);
|
|
for (int j = 0; j < n_tokens; ++j) {
|
|
const auto token = whisper_full_get_token_data(ctx, i, j);
|
|
|
|
prob += token.p;
|
|
++prob_n;
|
|
}
|
|
}
|
|
|
|
if (prob_n > 0) {
|
|
prob /= prob_n;
|
|
}
|
|
|
|
const auto t_end = std::chrono::high_resolution_clock::now();
|
|
t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
|
|
|
|
return result;
|
|
}
|
|
|
|
// compute similarity between two strings using Levenshtein distance
|
|
float similarity(const std::string & s0, const std::string & s1) {
|
|
const size_t len0 = s0.size() + 1;
|
|
const size_t len1 = s1.size() + 1;
|
|
|
|
std::vector<int> col(len1, 0);
|
|
std::vector<int> prevCol(len1, 0);
|
|
|
|
for (size_t i = 0; i < len1; i++) {
|
|
prevCol[i] = i;
|
|
}
|
|
|
|
for (size_t i = 0; i < len0; i++) {
|
|
col[0] = i;
|
|
for (size_t j = 1; j < len1; j++) {
|
|
col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (s0[i - 1] == s1[j - 1] ? 0 : 1));
|
|
}
|
|
col.swap(prevCol);
|
|
}
|
|
|
|
const float dist = prevCol[len1 - 1];
|
|
|
|
return 1.0f - (dist / std::max(s0.size(), s1.size()));
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
whisper_params params;
|
|
|
|
if (whisper_params_parse(argc, argv, params) == false) {
|
|
return 1;
|
|
}
|
|
|
|
if (whisper_lang_id(params.language.c_str()) == -1) {
|
|
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
|
whisper_print_usage(argc, argv, params);
|
|
exit(0);
|
|
}
|
|
|
|
// whisper init
|
|
|
|
struct whisper_context * ctx = whisper_init(params.model.c_str());
|
|
|
|
// print some info about the processing
|
|
{
|
|
fprintf(stderr, "\n");
|
|
if (!whisper_is_multilingual(ctx)) {
|
|
if (params.language != "en" || params.translate) {
|
|
params.language = "en";
|
|
params.translate = false;
|
|
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
|
}
|
|
}
|
|
fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n",
|
|
__func__,
|
|
params.n_threads,
|
|
params.language.c_str(),
|
|
params.translate ? "translate" : "transcribe",
|
|
params.no_timestamps ? 0 : 1);
|
|
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
|
|
// init audio
|
|
|
|
audio_async audio(30*1000);
|
|
if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) {
|
|
fprintf(stderr, "%s: audio.init() failed!\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
audio.resume();
|
|
|
|
bool is_running = true;
|
|
bool have_prompt = false;
|
|
bool ask_prompt = true;
|
|
|
|
float prob0 = 0.0f;
|
|
float prob = 0.0f;
|
|
|
|
std::vector<float> pcmf32_cur;
|
|
std::vector<float> pcmf32_prompt;
|
|
|
|
const std::string k_prompt = "Ok Whisper, start listening for commands.";
|
|
|
|
// main loop
|
|
while (is_running) {
|
|
// handle Ctrl + C
|
|
{
|
|
SDL_Event event;
|
|
while (SDL_PollEvent(&event)) {
|
|
switch (event.type) {
|
|
case SDL_QUIT:
|
|
{
|
|
is_running = false;
|
|
} break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!is_running) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// delay
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
|
|
|
if (ask_prompt) {
|
|
fprintf(stdout, "\n");
|
|
fprintf(stdout, "%s: Say the following phrase: '%s%s%s'\n", __func__, "\033[1m", k_prompt.c_str(), "\033[0m");
|
|
fprintf(stdout, "\n");
|
|
|
|
ask_prompt = false;
|
|
}
|
|
|
|
int64_t t_ms = 0;
|
|
|
|
{
|
|
audio.get(2000, pcmf32_cur);
|
|
|
|
if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
|
|
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
|
|
|
if (!have_prompt) {
|
|
audio.get(params.prompt_ms, pcmf32_cur);
|
|
|
|
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob0, t_ms));
|
|
|
|
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", txt.c_str(), "\033[0m", (int) t_ms);
|
|
|
|
const float sim = similarity(txt, k_prompt);
|
|
|
|
if (txt.length() < 0.8*k_prompt.length() || txt.length() > 1.2*k_prompt.length() || sim < 0.8f) {
|
|
fprintf(stdout, "%s: WARNING: prompt not recognized, try again\n", __func__);
|
|
ask_prompt = true;
|
|
} else {
|
|
fprintf(stdout, "\n");
|
|
fprintf(stdout, "%s: The prompt has been recognized!\n", __func__);
|
|
fprintf(stdout, "%s: Waiting for voice commands ...\n", __func__);
|
|
fprintf(stdout, "\n");
|
|
|
|
// save the audio for the prompt
|
|
pcmf32_prompt = pcmf32_cur;
|
|
have_prompt = true;
|
|
}
|
|
} else {
|
|
audio.get(params.command_ms, pcmf32_cur);
|
|
|
|
// prepend the prompt audio
|
|
pcmf32_cur.insert(pcmf32_cur.begin(), pcmf32_prompt.begin(), pcmf32_prompt.end());
|
|
|
|
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob, t_ms));
|
|
|
|
prob = 100.0f*(prob - prob0);
|
|
|
|
//fprintf(stdout, "%s: heard '%s'\n", __func__, txt.c_str());
|
|
|
|
// find the prompt in the text
|
|
float best_sim = 0.0f;
|
|
size_t best_len = 0;
|
|
for (int n = 0.8*k_prompt.size(); n <= 1.2*k_prompt.size(); ++n) {
|
|
const auto prompt = txt.substr(0, n);
|
|
|
|
const float sim = similarity(prompt, k_prompt);
|
|
|
|
//fprintf(stderr, "%s: prompt = '%s', sim = %f\n", __func__, prompt.c_str(), sim);
|
|
|
|
if (sim > best_sim) {
|
|
best_sim = sim;
|
|
best_len = n;
|
|
}
|
|
}
|
|
|
|
const std::string command = ::trim(txt.substr(best_len));
|
|
|
|
fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms);
|
|
fprintf(stdout, "\n");
|
|
}
|
|
|
|
audio.clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
audio.pause();
|
|
|
|
whisper_print_timings(ctx);
|
|
whisper_free(ctx);
|
|
|
|
return 0;
|
|
}
|