# whisper.cpp C/C++ port of [OpenAI's Whisper](https://github.com/openai/whisper) speech-to-text model - Plain C/C++ implementation without dependencies - ARM_NEON and AVX intrinsics support - F16 support ## Usage For a quick demo, simply run `make base.en`: ```bash $ make base.en Downloading base.en (142 MB just once) mkdir -p models models/ggml-base.en.bin 100%[=================================>] 141.11M 7.50MB/s in 19s =============================================== Running base.en on all samples in ./samples ... =============================================== ---------------------------------------------- [+] Running base.en on samples/jfk.wav ... (run 'ffplay samples/jfk.wav' to listen) ---------------------------------------------- whisper_model_load: loading model from 'models/ggml-base.en.bin' whisper_model_load: n_vocab = 51864 whisper_model_load: n_audio_ctx = 1500 whisper_model_load: n_audio_state = 512 whisper_model_load: n_audio_head = 8 whisper_model_load: n_audio_layer = 6 whisper_model_load: n_text_ctx = 448 whisper_model_load: n_text_state = 512 whisper_model_load: n_text_head = 8 whisper_model_load: n_text_layer = 6 whisper_model_load: n_mels = 80 whisper_model_load: f16 = 1 whisper_model_load: type = 2 whisper_model_load: mem_required = 782.00 MB whisper_model_load: adding 1607 extra tokens whisper_model_load: ggml ctx size = 186.26 MB whisper_model_load: memory size = 45.66 MB whisper_model_load: model size = 140.54 MB log_mel_spectrogram: n_sample = 176000, n_len = 1100 log_mel_spectrogram: recording length: 11.000000 s And so my fellow Americans ask not what your country can do for you. Ask what you can do for your country. main: load time = 60.62 ms main: mel time = 38.69 ms main: sample time = 2.36 ms main: encode time = 875.63 ms / 145.94 ms per layer main: decode time = 103.17 ms main: total time = 1081.13 ms ``` The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`. If you want some extra audio samples to play with, simply run: ``` make samples ``` This will download a few more audio files from Wikipedia and convert them to 16-bit WAV format via `ffmpeg`. You can download and run the other `.en` models as follows: ``` make tiny.en make base.en make small.en make medium.en ``` For detailed usage instructions, run: `./main -h` Note that `whisper.cpp` runs only with 16-bit WAV files, so make sure to convert your input before running the tool. For example, you can use `ffmpeg` like this: ```bash ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav ``` ## Limitations - Only `.en` models are supported - Very basic greedy sampling scheme - always pick up the top token - No timestamps - English only - Inference only - Runs on the CPU - Only mono-channel 16-bit WAV is supported ## Memory usage | Model | Mem | | --- | --- | | tiny.en | ~600 MB | | base.en | ~800 MB | | small.en | ~1.6 GB | | medium.en | ~3.5 GB | ## ggml format The original models are converted to a custom binary format. This allows to pack everything needed into a single file: - model parameters - mel filters - vocabulary - weights For more details, see the conversion script [convert-pt-to-ggml.py](convert-pt-to-ggml.py)