#include "ggml.h" // third-party utilities // use your favorite implementations #define DR_WAV_IMPLEMENTATION #include "dr_wav.h" #include #include #include #include #include #include #include #include #include #include enum e_model { MODEL_UNKNOWN, MODEL_TINY, MODEL_BASE, MODEL_SMALL, MODEL_MEDIUM, MODEL_LARGE, }; const size_t MB = 1024*1024; const std::map MEM_REQ_MODEL = { { MODEL_TINY, 100ull*MB }, { MODEL_BASE, 190ull*MB }, { MODEL_SMALL, 610ull*MB }, { MODEL_MEDIUM, 1900ull*MB }, { MODEL_LARGE, 3600ull*MB }, }; const std::map MEM_REQ_ENCODE = { { MODEL_TINY, 80ull*MB }, { MODEL_BASE, 128ull*MB }, { MODEL_SMALL, 300ull*MB }, { MODEL_MEDIUM, 680ull*MB }, { MODEL_LARGE, 1100ull*MB }, }; const std::map MEM_REQ_ENCODE_LAYER = { { MODEL_TINY, 170ull*MB }, { MODEL_BASE, 230ull*MB }, { MODEL_SMALL, 350ull*MB }, { MODEL_MEDIUM, 450ull*MB }, { MODEL_LARGE, 570ull*MB }, }; const std::map MEM_REQ_DECODE = { { MODEL_TINY, 190ull*MB }, { MODEL_BASE, 190ull*MB }, { MODEL_SMALL, 190ull*MB }, { MODEL_MEDIUM, 200ull*MB }, { MODEL_LARGE, 200ull*MB }, }; const std::map MEM_REQ_DECODE_LAYER = { { MODEL_TINY, 32ull*MB }, { MODEL_BASE, 44ull*MB }, { MODEL_SMALL, 64ull*MB }, { MODEL_MEDIUM, 84ull*MB }, { MODEL_LARGE, 110ull*MB }, }; const int SAMPLE_RATE = 16000; const int N_FFT = 400; const int N_MEL = 80; const int HOP_LENGTH = 160; const int CHUNK_SIZE = 30; // seconds struct whisper_mel { int n_len; int n_mel; std::vector data; }; struct whisper_filters { int32_t n_mel; int32_t n_fft; std::vector data; }; struct whisper_vocab { using id = int32_t; using token = std::string; int n_vocab = 51864; std::map token_to_id; std::map id_to_token; id token_eot = 50256; id token_sot = 50257; id token_prev = 50360; id token_solm = 50361; // ?? id token_beg = 50363; bool is_multilingual() const { return n_vocab == 51865; } }; // command-line parameters struct whisper_params { int32_t seed = -1; // RNG seed int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); int32_t max_tokens_per_iter = 64; bool verbose = false; bool print_special_tokens = false; std::string model = "models/whisper-tiny.en/ggml-model.bin"; // model path std::string fname_inp = "default.wav"; }; void whisper_print_usage(int argc, char ** argv, const whisper_params & params); bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { for (int i = 1; i < argc; i++) { std::string arg = argv[i]; if (arg == "-s" || arg == "--seed") { params.seed = std::stoi(argv[++i]); } else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); } else if (arg == "-T" || arg == "--tokens") { params.max_tokens_per_iter = std::stoi(argv[++i]); } else if (arg == "-v" || arg == "--verbose") { params.verbose = true; } else if (arg == "-ps" || arg == "--print_special") { params.print_special_tokens = true; } else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; } else if (arg == "-f" || arg == "--file") { params.fname_inp = argv[++i]; } else if (arg == "-h" || arg == "--help") { whisper_print_usage(argc, argv, params); exit(0); } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); whisper_print_usage(argc, argv, params); exit(0); } } return true; } void whisper_print_usage(int argc, char ** argv, const whisper_params & params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " -T N, --tokens N maximum number of tokens to generate per iteration (default: %d)\n", params.max_tokens_per_iter); fprintf(stderr, " -v, --verbose verbose output\n"); fprintf(stderr, " -ps, --print_special print special tokens\n"); fprintf(stderr, " -m FNAME, --model FNAME\n"); fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); fprintf(stderr, " -f FNAME, --file FNAME\n"); fprintf(stderr, " input WAV file path (default: %s)\n", params.fname_inp.c_str()); fprintf(stderr, "\n"); } // medium // hparams: { // 'n_mels': 80, // 'n_vocab': 51864, // 'n_audio_ctx': 1500, // 'n_audio_state': 1024, // 'n_audio_head': 16, // 'n_audio_layer': 24, // 'n_text_ctx': 448, // 'n_text_state': 1024, // 'n_text_head': 16, // 'n_text_layer': 24 // } // // default hparams (Whisper tiny) struct whisper_hparams { int32_t n_vocab = 51864; int32_t n_audio_ctx = 1500; int32_t n_audio_state = 384; int32_t n_audio_head = 6; int32_t n_audio_layer = 4; int32_t n_text_ctx = 448; int32_t n_text_state = 384; int32_t n_text_head = 6; int32_t n_text_layer = 4; int32_t n_mels = 80; int32_t f16 = 1; }; // audio encoding layer struct whisper_layer_encoder { // encoder.blocks.*.attn_ln struct ggml_tensor * attn_ln_0_w; struct ggml_tensor * attn_ln_0_b; // encoder.blocks.*.attn.out struct ggml_tensor * attn_ln_1_w; struct ggml_tensor * attn_ln_1_b; // encoder.blocks.*.attn.query struct ggml_tensor * attn_q_w; struct ggml_tensor * attn_q_b; // encoder.blocks.*.attn.key struct ggml_tensor * attn_k_w; // encoder.blocks.*.attn.value struct ggml_tensor * attn_v_w; struct ggml_tensor * attn_v_b; // encoder.blocks.*.mlp_ln struct ggml_tensor * mlp_ln_w; struct ggml_tensor * mlp_ln_b; // encoder.blocks.*.mlp.0 struct ggml_tensor * mlp_0_w; struct ggml_tensor * mlp_0_b; // encoder.blocks.*.mlp.2 struct ggml_tensor * mlp_1_w; struct ggml_tensor * mlp_1_b; }; // token decoding layer struct whisper_layer_decoder { // decoder.blocks.*.attn_ln struct ggml_tensor * attn_ln_0_w; struct ggml_tensor * attn_ln_0_b; // decoder.blocks.*.attn.out struct ggml_tensor * attn_ln_1_w; struct ggml_tensor * attn_ln_1_b; // decoder.blocks.*.attn.query struct ggml_tensor * attn_q_w; struct ggml_tensor * attn_q_b; // decoder.blocks.*.attn.key struct ggml_tensor * attn_k_w; // decoder.blocks.*.attn.value struct ggml_tensor * attn_v_w; struct ggml_tensor * attn_v_b; // decoder.blocks.*.cross_attn_ln struct ggml_tensor * cross_attn_ln_0_w; struct ggml_tensor * cross_attn_ln_0_b; // decoder.blocks.*.cross_attn.out struct ggml_tensor * cross_attn_ln_1_w; struct ggml_tensor * cross_attn_ln_1_b; // decoder.blocks.*.cross_attn.query struct ggml_tensor * cross_attn_q_w; struct ggml_tensor * cross_attn_q_b; // decoder.blocks.*.cross_attn.key struct ggml_tensor * cross_attn_k_w; // decoder.blocks.*.cross_attn.value struct ggml_tensor * cross_attn_v_w; struct ggml_tensor * cross_attn_v_b; // decoder.blocks.*.mlp_ln struct ggml_tensor * mlp_ln_w; struct ggml_tensor * mlp_ln_b; // decoder.blocks.*.mlp.0 struct ggml_tensor * mlp_0_w; struct ggml_tensor * mlp_0_b; // decoder.blocks.*.mlp.2 struct ggml_tensor * mlp_1_w; struct ggml_tensor * mlp_1_b; }; struct whisper_model { e_model type = MODEL_UNKNOWN; whisper_hparams hparams; whisper_filters filters; // encoder.positional_embedding struct ggml_tensor * e_pe; // encoder.conv1 struct ggml_tensor * e_conv_1_w; struct ggml_tensor * e_conv_1_b; // encoder.conv2 struct ggml_tensor * e_conv_2_w; struct ggml_tensor * e_conv_2_b; // encoder.ln_post struct ggml_tensor * e_ln_w; struct ggml_tensor * e_ln_b; // decoder.positional_embedding struct ggml_tensor * d_pe; // DD // decoder.token_embedding struct ggml_tensor * d_te; // DD // decoder.ln struct ggml_tensor * d_ln_w; // DD struct ggml_tensor * d_ln_b; // DD std::vector layers_encoder; std::vector layers_decoder; // key + value memory struct ggml_tensor * memory_k; struct ggml_tensor * memory_v; struct ggml_tensor * memory_cross_k; struct ggml_tensor * memory_cross_v; // struct ggml_context * ctx; std::map tensors; }; // load the model from a ggml file // // file format: // // - hparams // - pre-computed mel filters // - vocab // - weights // // see the convert-pt-to-ggml.py script for details // bool whisper_model_load(const std::string & fname, whisper_model & model, whisper_vocab & vocab) { printf("%s: loading model from '%s'\n", __func__, fname.c_str()); auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); return false; } // verify magic { uint32_t magic; fin.read((char *) &magic, sizeof(magic)); if (magic != 0x67676d6c) { fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); return false; } } //load hparams { auto & hparams = model.hparams; fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); fin.read((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx)); fin.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state)); fin.read((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head)); fin.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer)); fin.read((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx)); fin.read((char *) &hparams.n_text_state, sizeof(hparams.n_text_state)); fin.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head)); fin.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer)); fin.read((char *) &hparams.n_mels, sizeof(hparams.n_mels)); fin.read((char *) &hparams.f16, sizeof(hparams.f16)); assert(hparams.n_text_state == hparams.n_audio_state); if (hparams.n_audio_layer == 4) { model.type = e_model::MODEL_TINY; } if (hparams.n_audio_layer == 6) { model.type = e_model::MODEL_BASE; } if (hparams.n_audio_layer == 12) { model.type = e_model::MODEL_SMALL; } if (hparams.n_audio_layer == 24) { model.type = e_model::MODEL_MEDIUM; } if (hparams.n_audio_layer == 32) { model.type = e_model::MODEL_LARGE; } printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); printf("%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx); printf("%s: n_audio_state = %d\n", __func__, hparams.n_audio_state); printf("%s: n_audio_head = %d\n", __func__, hparams.n_audio_head); printf("%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer); printf("%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx); printf("%s: n_text_state = %d\n", __func__, hparams.n_text_state); printf("%s: n_text_head = %d\n", __func__, hparams.n_text_head); printf("%s: n_text_layer = %d\n", __func__, hparams.n_text_layer); printf("%s: n_mels = %d\n", __func__, hparams.n_mels); printf("%s: f16 = %d\n", __func__, hparams.f16); printf("%s: type = %d\n", __func__, model.type); const size_t mem_required = MEM_REQ_MODEL.at(model.type) + MEM_REQ_ENCODE.at(model.type) + MEM_REQ_ENCODE_LAYER.at(model.type) + MEM_REQ_DECODE.at(model.type) + MEM_REQ_DECODE_LAYER.at(model.type); printf("%s: mem_required = %.2f MB\n", __func__, mem_required / 1024.0 / 1024.0); } // load mel filters { auto & filters = model.filters; fin.read((char *) &filters.n_mel, sizeof(filters.n_mel)); fin.read((char *) &filters.n_fft, sizeof(filters.n_fft)); filters.data.resize(filters.n_mel * filters.n_fft); fin.read((char *) filters.data.data(), filters.data.size() * sizeof(float)); } // load vocab { int32_t n_vocab = 0; fin.read((char *) &n_vocab, sizeof(n_vocab)); //if (n_vocab != model.hparams.n_vocab) { // fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", // __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); // return false; //} std::string word; for (int i = 0; i < n_vocab; i++) { uint32_t len; fin.read((char *) &len, sizeof(len)); word.resize(len); fin.read((char *) word.data(), len); vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; //printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str()); } vocab.n_vocab = model.hparams.n_vocab; if (vocab.is_multilingual()) { vocab.token_eot++; vocab.token_sot++; vocab.token_prev++; vocab.token_solm++; vocab.token_beg++; } if (n_vocab < model.hparams.n_vocab) { printf("%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab); for (int i = n_vocab; i < model.hparams.n_vocab; i++) { if (i > vocab.token_beg) { word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]"; } else if (i == vocab.token_eot) { word = "[_EOT_]"; } else if (i == vocab.token_sot) { word = "[_SOT_]"; } else if (i == vocab.token_prev) { word = "[_PREV_]"; } else if (i == vocab.token_beg) { word = "[_BEG_]"; } else { word = "[_extra_token_" + std::to_string(i) + "]"; } vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; } } } // for the big tensors, we have the option to store the data in 16-bit floats // in order to save memory and also to speed up the computation const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32; auto & ctx = model.ctx; size_t ctx_size = 0; { const auto & hparams = model.hparams; const int n_vocab = hparams.n_vocab; const int n_audio_ctx = hparams.n_audio_ctx; const int n_audio_state = hparams.n_audio_state; const int n_audio_layer = hparams.n_audio_layer; const int n_text_ctx = hparams.n_text_ctx; const int n_text_state = hparams.n_text_state; const int n_text_layer = hparams.n_text_layer; const int n_mels = hparams.n_mels; // encoder { // TODO: F16 .. maybe not? ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe; ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype); // e_conv_1_w ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype); // e_conv_2_w ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w; ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b; } // decoder { // TODO: F16 .. maybe not? ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe; ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te; ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w; ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b; } // encoder layers { ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_0_w ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_1_w ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_q_w ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_v_w ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_ln_1_w ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b } // decoder layers { ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_0_w ctx_size += n_text_layer*( 4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_1_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_q_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_v_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_ln_1_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b // ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_q_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_v_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_ln_1_w ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b } ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_k ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_v ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_cross_k ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_cross_v ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); } // create the ggml context { struct ggml_init_params params = { .mem_size = ctx_size, .mem_buffer = NULL, }; model.ctx = ggml_init(params); if (!model.ctx) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return false; } } // prepare memory for the weights { const auto & hparams = model.hparams; const int n_vocab = hparams.n_vocab; const int n_audio_ctx = hparams.n_audio_ctx; const int n_audio_state = hparams.n_audio_state; const int n_audio_layer = hparams.n_audio_layer; const int n_text_ctx = hparams.n_text_ctx; const int n_text_state = hparams.n_text_state; const int n_text_layer = hparams.n_text_layer; const int n_mels = hparams.n_mels; model.layers_encoder.resize(n_audio_layer); model.layers_decoder.resize(n_text_layer); // encoder { model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx); model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype, 3, n_mels, n_audio_state); model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype, 3, n_audio_state, n_audio_state); model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); // map by name model.tensors["encoder.positional_embedding"] = model.e_pe; model.tensors["encoder.conv1.weight"] = model.e_conv_1_w; model.tensors["encoder.conv1.bias"] = model.e_conv_1_b; model.tensors["encoder.conv2.weight"] = model.e_conv_2_w; model.tensors["encoder.conv2.bias"] = model.e_conv_2_b; model.tensors["encoder.ln_post.weight"] = model.e_ln_w; model.tensors["encoder.ln_post.bias"] = model.e_ln_b; for (int i = 0; i < n_audio_layer; ++i) { auto & layer = model.layers_encoder[i]; layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state); layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state); layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state); layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); // map by name model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; } } // decoder { model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx); model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab); model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); // map by name model.tensors["decoder.positional_embedding"] = model.d_pe; model.tensors["decoder.token_embedding.weight"] = model.d_te; model.tensors["decoder.ln.weight"] = model.d_ln_w; model.tensors["decoder.ln.bias"] = model.d_ln_b; for (int i = 0; i < n_text_layer; ++i) { auto & layer = model.layers_decoder[i]; layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state); layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state); layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state); layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); // map by name model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b; } } } // key + value memory { const auto & hparams = model.hparams; const int n_text_state = hparams.n_text_state; const int n_text_layer = hparams.n_text_layer; const int n_text_ctx = hparams.n_text_ctx; { const int n_mem = n_text_layer*n_text_ctx; const int n_elements = n_text_state*n_mem; model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); } { const int n_audio_ctx = hparams.n_audio_ctx; const int n_mem = n_text_layer*n_audio_ctx; const int n_elements = n_text_state*n_mem; model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); } const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) + ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v); printf("%s: memory size = %8.2f MB \n", __func__, memory_size/1024.0/1024.0); } // load weights { size_t total_size = 0; while (true) { int32_t n_dims; int32_t length; int32_t ftype; fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); fin.read(reinterpret_cast(&length), sizeof(length)); fin.read(reinterpret_cast(&ftype), sizeof(ftype)); if (fin.eof()) { break; } int32_t nelements = 1; int32_t ne[3] = { 1, 1, 1 }; for (int i = 0; i < n_dims; ++i) { fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); fin.read(&name[0], length); if (model.tensors.find(name.data()) == model.tensors.end()) { fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); return false; } auto tensor = model.tensors[name.data()]; if (ggml_nelements(tensor) != nelements) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); return false; } if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) { fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n", __func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]); return false; } const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t); if (nelements*bpe != ggml_nbytes(tensor)) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); return false; } fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); //printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); total_size += ggml_nbytes(tensor); } printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0); } fin.close(); return true; } // evaluate the encoder // // given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder // part of the transformer model and returns the encoded features // // - model: the model // - n_threads: number of threads to use // - mel_offset: offset in the mel spectrogram (i.e. audio offset) // - mel_inp: input mel spectrogram // - features: output encoded features // bool whisper_encode( const whisper_model & model, const int n_threads, const int mel_offset, const whisper_mel & mel_inp, std::vector & features) { const auto & hparams = model.hparams; const int n_vocab = hparams.n_vocab; const int n_ctx = hparams.n_audio_ctx; const int n_state = hparams.n_audio_state; const int n_head = hparams.n_audio_head; const int n_layer = hparams.n_audio_layer; const int N = n_ctx; const int n_mels = hparams.n_mels; assert(mel_inp.n_mel == n_mels); struct ggml_init_params params; { static size_t buf_size = MEM_REQ_ENCODE.at(model.type); static void * buf = malloc(buf_size); params = { .mem_size = buf_size, .mem_buffer = buf, }; } struct ggml_context * ctx0 = ggml_init(params); struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels); assert(mel->type == GGML_TYPE_F32); { float * dst = (float *) mel->data; memset(dst, 0, ggml_nbytes(mel)); const int i0 = std::min(mel_offset, mel_inp.n_len); const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len); for (int j = 0; j < mel_inp.n_mel; ++j) { for (int i = i0; i < i1; ++i) { dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i]; } } } struct ggml_tensor * cur; // convolution + gelu { cur = ggml_conv_1d_1s(ctx0, model.e_conv_1_w, mel); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.e_conv_1_b, cur), cur); cur = ggml_gelu(ctx0, cur); cur = ggml_conv_1d_2s(ctx0, model.e_conv_2_w, cur); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.e_conv_2_b, cur), cur); cur = ggml_gelu(ctx0, cur); } cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur)); struct ggml_tensor * inpL = cur; for (int il = 0; il < n_layer; ++il) { const auto & layer = model.layers_encoder[il]; // create separate context for each layer to reduce memory usage struct ggml_init_params paramsL; { static size_t buf_size = MEM_REQ_ENCODE_LAYER.at(model.type); static void * buf = malloc(buf_size); paramsL = { .mem_size = buf_size, .mem_buffer = buf, }; } struct ggml_context * ctxL = ggml_init(paramsL); // norm { cur = ggml_norm(ctxL, inpL); // cur = ln_0_w*cur + ln_0_b cur = ggml_add(ctxL, ggml_mul(ctxL, ggml_repeat(ctxL, layer.attn_ln_0_w, cur), cur), ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); } // self-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, layer.attn_q_w, cur); Qcur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_q_b, Qcur), Qcur); Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); // no bias for Key struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, layer.attn_k_w, cur); Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, layer.attn_v_w, cur); Vcur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_v_b, Vcur), Vcur); // ------ struct ggml_tensor * Q = ggml_permute(ctxL, ggml_cpy(ctxL, Qcur, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), 0, 2, 1, 3); struct ggml_tensor * K = ggml_permute(ctxL, ggml_cpy(ctxL, Kcur, ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), // F16 ! 0, 2, 1, 3); //// BLAS attempt //struct ggml_tensor * KQ = // ggml_mul_mat(ctxL, // ggml_cpy(ctxL, K, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, N, n_head)), // ggml_cpy(ctxL, Q, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, N, n_head))); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); //struct ggml_tensor * K = // ggml_cpy(ctxL, // ggml_permute(ctxL, // ggml_reshape_3d(ctxL, // Kcur, // n_state/n_head, n_head, N), // 1, 2, 0, 3), // ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head) // ); //// K * Q //struct ggml_tensor * KQ = ggml_mul_mat(ctxL, ggml_transpose(ctxL, K), Q); //struct ggml_tensor * KQ_scaled = // ggml_scale(ctxL, // KQ, // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) // ); struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ); //struct ggml_tensor * V_trans = // ggml_permute(ctxL, // ggml_cpy(ctxL, // Vcur, // ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), // 1, 2, 0, 3); //struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); struct ggml_tensor * V = ggml_cpy(ctxL, ggml_permute(ctxL, ggml_reshape_3d(ctxL, Vcur, n_state/n_head, n_head, N), 0, 2, 1, 3), ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head) // F16 ! ); struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max); struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); cur = ggml_cpy(ctxL, KQV_merged, ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); } // projection { cur = ggml_mul_mat(ctxL, layer.attn_ln_1_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_ln_1_b, cur), cur); } // add the input cur = ggml_add(ctxL, cur, inpL); struct ggml_tensor * inpFF = cur; // feed-forward network { // norm { cur = ggml_norm(ctxL, inpFF); // cur = mlp_ln_w*cur + mlp_ln_b cur = ggml_add(ctxL, ggml_mul(ctxL, ggml_repeat(ctxL, layer.mlp_ln_w, cur), cur), ggml_repeat(ctxL, layer.mlp_ln_b, cur)); } // fully connected cur = ggml_mul_mat(ctxL, layer.mlp_0_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.mlp_0_b, cur), cur); // GELU activation cur = ggml_gelu(ctxL, cur); // projection cur = ggml_mul_mat(ctxL, layer.mlp_1_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.mlp_1_b, cur), cur); } // output from this layer struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); { struct ggml_cgraph gf = { .n_threads = n_threads }; ggml_build_forward_expand(&gf, inpO); ggml_graph_compute (ctxL, &gf); //ggml_graph_print(&gf); } // TODO: this is a hack to have per-layer computation graphs - need to come up with something better // input for next layer (inpO -> inpL) memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); inpL->op = GGML_OP_NONE; inpL->src0 = NULL; inpL->src1 = NULL; //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); ggml_free(ctxL); } cur = inpL; // norm { cur = ggml_norm(ctx0, cur); // cur = ln_f_g*cur + ln_f_b cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.e_ln_w, cur), cur), ggml_repeat(ctx0, model.e_ln_b, cur)); } // run the computation { struct ggml_cgraph gf = { .n_threads = n_threads }; ggml_build_forward_expand(&gf, cur); ggml_graph_compute (ctx0, &gf); //ggml_graph_print(&gf); } // cur //{ // printf("ne0 = %d\n", cur->ne[0]); // printf("ne1 = %d\n", cur->ne[1]); // for (int i = 0; i < 10; ++i) { // printf("%8.4f ", ((float *)(cur->data))[i]); // } // printf("... "); // for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) { // printf("%8.4f ", ((float *)(cur->data))[i]); // } // printf("\n"); //} // pre-compute cross-attention memory { struct ggml_cgraph gf = { .n_threads = n_threads }; // TODO: hack to disconnect the encoded features from the previous graph cur->op = GGML_OP_NONE; cur->src0 = NULL; cur->src1 = NULL; for (int il = 0; il < model.hparams.n_text_layer; ++il) { auto & layer = model.layers_decoder[il]; struct ggml_tensor * Kcross = ggml_mul_mat(ctx0, layer.cross_attn_k_w, cur); Kcross = ggml_scale(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25))); struct ggml_tensor * Vcross = ggml_mul_mat(ctx0, layer.cross_attn_v_w, cur); Vcross = ggml_add(ctx0, ggml_repeat(ctx0, layer.cross_attn_v_b, Vcross), Vcross); struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx)); struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v)); } ggml_graph_compute(ctx0, &gf); } //////////////////////////////////////////////////////////////////////////// // output the features assert(cur->type == GGML_TYPE_F32); features.resize(cur->ne[0]*cur->ne[1]); memcpy(features.data(), cur->data, features.size()*sizeof(float)); //printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0); ggml_free(ctx0); return true; } // evaluate the decoder // // given text prompt + audio features -> predicts the probabilities for the next token // // - model: the model // - n_threads: number of threads to use // - n_past: prompt length // - prompt: text prompt // - logits_out: output logits // - probs_out: output probabilities // bool whisper_decode( const whisper_model & model, const int n_threads, const int n_past, const std::vector & prompt, std::vector & logits_out, std::vector & probs_out) { const auto & hparams = model.hparams; const int n_vocab = hparams.n_vocab; const int n_ctx = hparams.n_text_ctx; const int n_state = hparams.n_text_state; const int n_head = hparams.n_text_head; const int n_layer = hparams.n_text_layer; const int N = prompt.size(); const int M = hparams.n_audio_ctx; struct ggml_init_params params; { static size_t buf_size = MEM_REQ_DECODE.at(model.type); static void * buf = malloc(buf_size); params = { .mem_size = buf_size, .mem_buffer = buf, }; } struct ggml_context * ctx0 = ggml_init(params); struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, prompt.data(), N*ggml_element_size(embd)); struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); for (int i = 0; i < N; ++i) { ((int32_t *) position->data)[i] = n_past + i; } // wte + wpe struct ggml_tensor * cur = ggml_add(ctx0, ggml_get_rows(ctx0, model.d_te, embd), ggml_get_rows(ctx0, model.d_pe, position)); struct ggml_tensor * inpL = cur; for (int il = 0; il < n_layer; ++il) { const auto & layer = model.layers_decoder[il]; struct ggml_init_params paramsL; { static size_t buf_size = MEM_REQ_DECODE_LAYER.at(model.type); static void * buf = malloc(buf_size); paramsL = { .mem_size = buf_size, .mem_buffer = buf, }; } struct ggml_context * ctxL = ggml_init(paramsL); struct ggml_cgraph gf = { .n_threads = n_threads }; // norm { cur = ggml_norm(ctxL, inpL); // cur = ln_0_w*cur + ln_0_b cur = ggml_add(ctxL, ggml_mul(ctxL, ggml_repeat(ctxL, layer.attn_ln_0_w, cur), cur), ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); } // self-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, layer.attn_q_w, cur); Qcur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_q_b, Qcur), Qcur); Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); // no bias for Key struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, layer.attn_k_w, cur); Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, layer.attn_v_w, cur); Vcur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_v_b, Vcur), Vcur); // store key and value to memory { struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past)); ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v)); } // ------ struct ggml_tensor * Q = ggml_permute(ctxL, ggml_cpy(ctxL, Qcur, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), 0, 2, 1, 3); struct ggml_tensor * K = ggml_permute(ctxL, ggml_reshape_3d(ctxL, ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state), n_state/n_head, n_head, n_past + N), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); //struct ggml_tensor * KQ_scaled = // ggml_scale(ctxL, // KQ, // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) // ); struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ, n_past); struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_masked); struct ggml_tensor * V_trans = ggml_permute(ctxL, ggml_reshape_3d(ctxL, ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state), n_state/n_head, n_head, n_past + N), 1, 2, 0, 3); struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); cur = ggml_cpy(ctxL, KQV_merged, ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); } { cur = ggml_mul_mat(ctxL, layer.attn_ln_1_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.attn_ln_1_b, cur), cur); } // add the input struct ggml_tensor * inpCA = ggml_add(ctxL, cur, inpL); // norm { cur = ggml_norm(ctxL, inpCA); // Note we use inpCA here // cur = ln_0_w*cur + ln_0_b cur = ggml_add(ctxL, ggml_mul(ctxL, ggml_repeat(ctxL, layer.cross_attn_ln_0_w, cur), cur), ggml_repeat(ctxL, layer.cross_attn_ln_0_b, cur)); } // cross-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, layer.cross_attn_q_w, cur); Qcur = ggml_add(ctxL, ggml_repeat(ctxL, layer.cross_attn_q_b, Qcur), Qcur); Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); // Kcross is already scaled struct ggml_tensor * Kcross = ggml_reshape_3d(ctxL, ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state), n_state/n_head, n_head, M); struct ggml_tensor * Vcross = ggml_reshape_3d(ctxL, ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state), n_state/n_head, n_head, M); // ------ struct ggml_tensor * Q = ggml_permute(ctxL, ggml_cpy(ctxL, Qcur, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), 0, 2, 1, 3); struct ggml_tensor * K = ggml_permute(ctxL, Kcross, 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); //struct ggml_tensor * KQ_scaled = // ggml_scale(ctxL, // KQ, // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) // ); // no masking for cross-attention //struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past); struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ); struct ggml_tensor * V_trans = ggml_permute(ctxL, Vcross, 1, 2, 0, 3); struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_state, N) cur = ggml_cpy(ctxL, KQV_merged, ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); } // projection { cur = ggml_mul_mat(ctxL, layer.cross_attn_ln_1_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.cross_attn_ln_1_b, cur), cur); } // add the input cur = ggml_add(ctxL, cur, inpCA); struct ggml_tensor * inpFF = cur; // feed-forward network { // norm { cur = ggml_norm(ctxL, inpFF); // cur = ln_2_g*cur + ln_2_b // [ 768, N] cur = ggml_add(ctxL, ggml_mul(ctxL, ggml_repeat(ctxL, layer.mlp_ln_w, cur), cur), ggml_repeat(ctxL, layer.mlp_ln_b, cur)); } // fully connected cur = ggml_mul_mat(ctxL, layer.mlp_0_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.mlp_0_b, cur), cur); // GELU activation cur = ggml_gelu(ctxL, cur); // projection cur = ggml_mul_mat(ctxL, layer.mlp_1_w, cur); cur = ggml_add(ctxL, ggml_repeat(ctxL, layer.mlp_1_b, cur), cur); } // output from this layer struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); { ggml_build_forward_expand(&gf, inpO); ggml_graph_compute (ctxL, &gf); //ggml_graph_print(&gf); } // TODO: this is a hack to have per-layer computation graphs - need to come up with something better // input for next layer (inpO -> inpL) memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); inpL->op = GGML_OP_NONE; inpL->src0 = NULL; inpL->src1 = NULL; if (N > 1) { //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); } ggml_free(ctxL); } cur = inpL; // norm { cur = ggml_norm(ctx0, cur); cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.d_ln_w, cur), cur), ggml_repeat(ctx0, model.d_ln_b, cur)); } struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur); // logits -> probs cur = ggml_dup(ctx0, logits); cur = ggml_soft_max(ctx0, cur); // in-place // run the computation { struct ggml_cgraph gf = { .n_threads = n_threads }; ggml_build_forward_expand(&gf, cur); ggml_graph_compute (ctx0, &gf); } logits_out.resize(N*n_vocab); memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab); probs_out.resize(N*n_vocab); memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab); //if (N > 1) { // const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N; // printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token); // printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx); //} ggml_free(ctx0); return true; } // the most basic sampling scheme - select the top token // TODO: beam search // TODO: temperature whisper_vocab::id whisper_sample_best( const whisper_vocab & vocab, const float * probs, double temp, int offset = 0) { int n_logits = vocab.id_to_token.size(); std::vector> probs_id; probs_id.reserve(n_logits); for (int i = offset; i < n_logits; i++) { probs_id.push_back(std::make_pair(probs[i], i)); } const int top_k = 10; // find the top K tokens std::partial_sort( probs_id.begin(), probs_id.begin() + top_k, probs_id.end(), [](const std::pair & a, const std::pair & b) { return a.first > b.first; }); probs_id.resize(top_k); //printf("\n"); //for (int i = 0; i < (int) probs_id.size(); i++) { // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second); //} int res = 0; while (probs_id[res].second == vocab.token_solm && res < (int) probs_id.size() - 1) { res++; } return probs_id[res].second; } // Cooley-Tukey FFT // poor man's implmentation - use something better // input is real-valued // output is complex-valued void fft(const std::vector & in, std::vector & out) { out.resize(in.size()*2); int N = in.size(); if (N == 1) { out[0] = in[0]; out[1] = 0; return; } std::vector even; std::vector odd; for (int i = 0; i < N; i++) { if (i % 2 == 0) { even.push_back(in[i]); } else { odd.push_back(in[i]); } } std::vector even_fft; std::vector odd_fft; fft(even, even_fft); fft(odd, odd_fft); for (int k = 0; k < N/2; k++) { float theta = 2*M_PI*k/N; float re = cos(theta); float im = -sin(theta); float re_odd = odd_fft[2*k + 0]; float im_odd = odd_fft[2*k + 1]; out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd; out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd; out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd; out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd; } } // ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124 bool log_mel_spectrogram( const std::vector sf32, const int sample_rate, const int fft_size, const int fft_step, const int n_mel, const int n_threads, const whisper_filters & filters, whisper_mel & mel) { const int n_sample = sf32.size(); const float * samples = sf32.data(); // Hanning window std::vector hann; hann.resize(fft_size); for (int i = 0; i < fft_size; i++) { hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size))); } mel.n_mel = n_mel; mel.n_len = (n_sample)/fft_step; mel.data.resize(mel.n_mel*mel.n_len); const int n_fft = 1 + fft_size/2; printf("%s: n_sample = %d, n_len = %d\n", __func__, n_sample, mel.n_len); printf("%s: recording length: %f s\n", __func__, (float) n_sample/sample_rate); std::vector workers(n_threads); for (int iw = 0; iw < n_threads; ++iw) { workers[iw] = std::thread([&](int ith) { std::vector fft_in; fft_in.resize(fft_size); for (int i = 0; i < fft_size; i++) { fft_in[i] = 0.0; } std::vector fft_out; fft_out.resize(2*fft_size); for (int i = ith; i < mel.n_len; i += n_threads) { const int offset = i*fft_step; // apply Hanning window for (int j = 0; j < fft_size; j++) { if (offset + j < n_sample) { fft_in[j] = hann[j]*samples[offset + j]; } else { fft_in[j] = 0.0; } } // FFT -> mag^2 fft(fft_in, fft_out); for (int j = 0; j < n_fft; j++) { fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]); } // mel spectrogram for (int j = 0; j < mel.n_mel; j++) { double sum = 0.0; for (int k = 0; k < n_fft; k++) { sum += fft_out[k]*filters.data[j*n_fft + k]; } if (sum < 1e-10) { sum = 1e-10; } sum = log10(sum); mel.data[j*mel.n_len + i] = sum; } } }, iw); } for (int iw = 0; iw < n_threads; ++iw) { workers[iw].join(); } // clamping and normalization double mmax = -1e20; for (int i = 0; i < mel.n_mel*mel.n_len; i++) { if (mel.data[i] > mmax) { mmax = mel.data[i]; } } mmax -= 8.0; for (int i = 0; i < mel.n_mel*mel.n_len; i++) { if (mel.data[i] < mmax) { mel.data[i] = mmax; } mel.data[i] = (mel.data[i] + 4.0)/4.0; } return true; } int main(int argc, char ** argv) { const int64_t t_main_start_us = ggml_time_us(); whisper_params params; params.model = "models/whisper-tiny.en/ggml-model.bin"; if (whisper_params_parse(argc, argv, params) == false) { return 1; } if (params.seed < 0) { params.seed = time(NULL); } // Model loading //printf("%s: seed = %d\n", __func__, params.seed); int64_t t_load_us = 0; int64_t t_mel_us = 0; int64_t t_sample_us = 0; int64_t t_encode_us = 0; int64_t t_decode_us = 0; whisper_vocab vocab; whisper_model model; // load the model { const int64_t t_start_us = ggml_time_us(); if (!whisper_model_load(params.model, model, vocab)) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); return 1; } t_load_us = ggml_time_us() - t_start_us; } // WAV input std::vector pcmf32; { drwav wav; if (!drwav_init_file(&wav, params.fname_inp.c_str(), NULL)) { fprintf(stderr, "%s: failed to open WAV file '%s' - check your input\n", argv[0], params.fname_inp.c_str()); return 2; } if (wav.channels != 1) { fprintf(stderr, "%s: WAV file '%s' must be mono\n", argv[0], params.fname_inp.c_str()); return 3; } if (wav.sampleRate != SAMPLE_RATE) { fprintf(stderr, "%s: WAV file '%s' must be 16 kHz\n", argv[0], params.fname_inp.c_str()); return 4; } if (wav.bitsPerSample != 16) { fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", argv[0], params.fname_inp.c_str()); return 5; } std::vector pcm16; pcm16.resize(wav.totalPCMFrameCount); drwav_read_pcm_frames_s16(&wav, wav.totalPCMFrameCount, pcm16.data()); drwav_uninit(&wav); // convert to float pcmf32.resize(pcm16.size()); for (size_t i = 0; i < pcm16.size(); i++) { pcmf32[i] = float(pcm16[i])/32768.0f; } } // compute log mel spectrogram whisper_mel mel_inp; { const int64_t t_start_us = ggml_time_us(); log_mel_spectrogram(pcmf32, SAMPLE_RATE, N_FFT, HOP_LENGTH, N_MEL, params.n_threads, model.filters, mel_inp); t_mel_us = ggml_time_us() - t_start_us; } std::vector prompt_past = { }; // main loop int seek = 0; while (true) { if (seek >= mel_inp.n_len) { break; } // encode audio features starting at offset seek std::vector features; { const int64_t t_start_us = ggml_time_us(); if (!whisper_encode(model, params.n_threads, seek, mel_inp, features)) { fprintf(stderr, "%s: failed to eval\n", __func__); return 1; } t_encode_us = ggml_time_us() - t_start_us; } std::vector probs; std::vector logits; // SOT // ref: https://github.com/openai/whisper/blob/15ab54826343c27cfaf44ce31e9c8fb63d0aa775/whisper/decoding.py#L506-L526 // TODO: use different initial tokens for different tasks std::vector prompt = { vocab.token_sot }; int n_past = 0; if (prompt_past.size() > 0) { int n_take = std::min(model.hparams.n_text_ctx/2, int(prompt_past.size())); prompt = { vocab.token_prev }; prompt.insert(prompt.end(), prompt_past.end() - n_take, prompt_past.end()); prompt.push_back(vocab.token_sot); prompt_past.clear(); prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end() - 1); } bool done = false; int seek_delta = 100*CHUNK_SIZE; whisper_vocab::id last_id = 0; //for (int i = 0; i < prompt.size(); i++) { // printf("%s: prompt[%d] = %s\n", __func__, i, vocab.id_to_token[prompt[i]].c_str()); //} printf("\n"); for (int i = 0; i < model.hparams.n_text_ctx/2; ++i) { // decode if (prompt.size() > 0) { const int64_t t_start_us = ggml_time_us(); if (!whisper_decode(model, params.n_threads, n_past, prompt, logits, probs)) { fprintf(stderr, "%s: failed to eval\n", __func__); return 1; } t_decode_us += ggml_time_us() - t_start_us; } n_past += prompt.size(); prompt.clear(); { // sample next token const float temp = 1.0; // TODO const int n_vocab = model.hparams.n_vocab; whisper_vocab::id id = 0; { const int64_t t_start_sample_us = ggml_time_us(); id = whisper_sample_best(vocab, probs.data() + (probs.size() - n_vocab), temp, i > params.max_tokens_per_iter ? vocab.token_beg : 0); t_sample_us += ggml_time_us() - t_start_sample_us; } // end of text token if (id == vocab.token_eot) { break; } // 2 consecutive time tokens if (id > vocab.token_beg && last_id > vocab.token_beg) { seek_delta = 2*(id - vocab.token_beg); done = true; } last_id = id; // add it to the context prompt.push_back(id); prompt_past.push_back(id); } // display text for (auto id : prompt) { if (params.print_special_tokens == false && id >= vocab.token_eot) { continue; } printf("%s", vocab.id_to_token[id].c_str()); } fflush(stdout); if (done) { break; } } seek += seek_delta; } // report timing { const int64_t t_main_end_us = ggml_time_us(); printf("\n\n"); printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f); printf("%s: mel time = %8.2f ms\n", __func__, t_mel_us/1000.0f); printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f); printf("%s: encode time = %8.2f ms / %.2f ms per layer\n", __func__, t_encode_us/1000.0f, t_encode_us/1000.0f/model.hparams.n_audio_layer); printf("%s: decode time = %8.2f ms\n", __func__, t_decode_us/1000.0f); printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); } ggml_free(model.ctx); return 0; }