// Real-time speech recognition of input from a microphone // // A very quick-n-dirty implementation serving mainly as a proof of concept. #include "whisper.h" // third-party utilities // use your favorite implementations #define DR_WAV_IMPLEMENTATION #include "dr_wav.h" #include #include #include #include #include #include #include int64_t get_time_us() { return std::chrono::duration_cast( std::chrono::high_resolution_clock::now().time_since_epoch()).count(); } // 500 -> 00:05.000 // 6000 -> 01:00.000 std::string to_timestamp(int64_t t) { int64_t sec = t/100; int64_t msec = t - sec*100; int64_t min = sec/60; sec = sec - min*60; char buf[32]; snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec); return std::string(buf); } struct whisper_result { whisper_token id; int64_t t; }; // command-line parameters struct whisper_params { int32_t seed = -1; // RNG seed, not used currently int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); bool verbose = false; bool translate = false; bool print_special_tokens = false; bool no_timestamps = true; std::string language = "en"; std::string model = "models/ggml-base.en.bin"; std::string fname_inp = "samples/jfk.wav"; }; void whisper_print_usage(int argc, char ** argv, const whisper_params & params); bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { for (int i = 1; i < argc; i++) { std::string arg = argv[i]; if (arg == "-s" || arg == "--seed") { params.seed = std::stoi(argv[++i]); } else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); } else if (arg == "-v" || arg == "--verbose") { params.verbose = true; } else if (arg == "--translate") { params.translate = true; } else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; if (whisper_lang_id(params.language.c_str()) == -1) { fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str()); whisper_print_usage(argc, argv, params); exit(0); } } else if (arg == "-ps" || arg == "--print_special") { params.print_special_tokens = true; } else if (arg == "-nt" || arg == "--no_timestamps") { params.no_timestamps = true; } else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; } else if (arg == "-f" || arg == "--file") { params.fname_inp = argv[++i]; } else if (arg == "-h" || arg == "--help") { whisper_print_usage(argc, argv, params); exit(0); } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); whisper_print_usage(argc, argv, params); exit(0); } } return true; } void whisper_print_usage(int argc, char ** argv, const whisper_params & params) { fprintf(stderr, "\n"); fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " -v, --verbose verbose output\n"); fprintf(stderr, " --translate translate from source language to english\n"); fprintf(stderr, " -ps, --print_special print special tokens\n"); fprintf(stderr, " -nt, --no_timestamps do not print timestamps\n"); fprintf(stderr, " -l LANG, --language LANG spoken language (default: %s)\n", params.language.c_str()); fprintf(stderr, " -m FNAME, --model FNAME model path (default: %s)\n", params.model.c_str()); fprintf(stderr, " -f FNAME, --file FNAME input WAV file path (default: %s)\n", params.fname_inp.c_str()); fprintf(stderr, "\n"); } // // SDL Audio capture // SDL_AudioDeviceID g_dev_id_in = 0; bool audio_sdl_init(const int capture_id) { if (g_dev_id_in) { fprintf(stderr, "%s: already initialized\n", __func__); return false; } if (g_dev_id_in == 0) { SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO); if (SDL_Init(SDL_INIT_AUDIO) < 0) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError()); return (1); } SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE); { int nDevices = SDL_GetNumAudioDevices(SDL_TRUE); printf("%s: found %d capture devices:\n", __func__, nDevices); for (int i = 0; i < nDevices; i++) { printf("%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE)); } } } if (g_dev_id_in == 0) { SDL_AudioSpec capture_spec_requested; SDL_AudioSpec capture_spec_obtained; SDL_zero(capture_spec_requested); SDL_zero(capture_spec_obtained); capture_spec_requested.freq = SAMPLE_RATE; capture_spec_requested.format = AUDIO_F32; capture_spec_requested.channels = 1; capture_spec_requested.samples = 1024; if (capture_id >= 0) { printf("%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE)); g_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0); } else { printf("%s: attempt to open default capture device ...\n", __func__); g_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0); } if (!g_dev_id_in) { printf("%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError()); g_dev_id_in = 0; } else { printf("%s: obtained spec for input device (SDL Id = %d):\n", __func__, g_dev_id_in); printf("%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq); printf("%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format, capture_spec_requested.format); printf("%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels, capture_spec_requested.channels); printf("%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples); } } return true; } /////////////////////////// int main(int argc, char ** argv) { const int64_t t_main_start_us = get_time_us(); whisper_params params; if (whisper_params_parse(argc, argv, params) == false) { return 1; } if (params.seed < 0) { params.seed = time(NULL); } // init audio if (!audio_sdl_init(-1)) { fprintf(stderr, "%s: audio_sdl_init() failed!\n", __func__); return 1; } // whisper init struct whisper_context * ctx = whisper_init(params.model.c_str()); const int n_samples_30s = 30*SAMPLE_RATE; std::vector pcmf32(n_samples_30s, 0.0f); std::vector pcmf32_old; // print some info about the processing { printf("\n"); if (!whisper_is_multilingual(ctx)) { if (params.language != "en" || params.translate) { params.language = "en"; params.translate = false; printf("%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__); } } printf("%s: processing %d samples (%.1f sec), %d threads, lang = %s, task = %s, timestamps = %d ...\n", __func__, int(pcmf32.size()), float(pcmf32.size())/SAMPLE_RATE, params.n_threads, params.language.c_str(), params.translate ? "translate" : "transcribe", params.no_timestamps ? 0 : 1); printf("\n"); } SDL_PauseAudioDevice(g_dev_id_in, 0); bool is_running = true; // main audio loop while (is_running) { // process SDL events: SDL_Event event; while (SDL_PollEvent(&event)) { switch (event.type) { case SDL_QUIT: is_running = false; break; default: break; } } // process 3 seconds of new audio while ((int) SDL_GetQueuedAudioSize(g_dev_id_in) < 3*SAMPLE_RATE*sizeof(float)) { SDL_Delay(1); } const int n_samples_new = SDL_GetQueuedAudioSize(g_dev_id_in)/sizeof(float); // take one second from previous iteration // TODO: better strategy const int n_samples_take = std::min((int) pcmf32_old.size(), std::max(0, n_samples_30s/30 - n_samples_new)); //printf("processing: take = %d, new = %d, old = %d\n", n_samples_take, n_samples_new, (int) pcmf32_old.size()); pcmf32.resize(n_samples_new + n_samples_take); for (int i = 0; i < n_samples_take; i++) { pcmf32[i] = pcmf32_old[pcmf32_old.size() - n_samples_take + i]; } SDL_DequeueAudio(g_dev_id_in, pcmf32.data() + n_samples_take, n_samples_new*sizeof(float)); pcmf32_old = pcmf32; // compute log mel spectrogram if (whisper_pcm_to_mel(ctx, pcmf32.data(), pcmf32.size(), params.n_threads) != 0) { fprintf(stderr, "%s: failed to compute log mel spectrogram\n", argv[0]); return 6; } // the accumulated text context so far std::vector prompt_past = { }; // these tokens determine the task that will be performed std::vector prompt_init = { whisper_token_sot(ctx) }; if (whisper_is_multilingual(ctx)) { prompt_init.push_back(whisper_token_sot(ctx) + 1 + whisper_lang_id(params.language.c_str())); if (params.translate) { prompt_init.push_back(whisper_token_translate()); } else { prompt_init.push_back(whisper_token_transcribe()); } } // the generated text including timestamps //std::vector result_all; // main loop int seek = 0; while (true) { if (seek >= whisper_n_len(ctx)) { break; } // encode audio features starting at offset seek if (whisper_encode(ctx, seek, params.n_threads) != 0) { fprintf(stderr, "%s: failed to encode\n", __func__); return 7; } std::vector prompt; int n_past = 0; // if we have already generated some text, use it as a prompt to condition the next generation if (prompt_past.size() > 0) { int n_take = std::min(whisper_n_text_ctx(ctx)/2, int(prompt_past.size())); prompt = { whisper_token_prev(ctx) }; prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end()); prompt_past.clear(); prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end()); } prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end()); bool done = false; int seek_delta = 100*CHUNK_SIZE; whisper_token last_id = 0; // print the prompt //printf("\n\n"); //for (int i = 0; i < prompt.size(); i++) { // printf("%s: prompt[%d] = %s\n", __func__, i, vocab.id_to_token[prompt[i]].c_str()); //} //printf("\n\n"); // the accumulated transcription in the current interation int result_len = 0; std::vector result_cur; for (int i = 0; i < whisper_n_text_ctx(ctx)/2 - 4; ++i) { if (whisper_decode(ctx, prompt.data(), prompt.size(), n_past, params.n_threads) != 0) { fprintf(stderr, "%s: failed to decode\n", __func__); return 8; } n_past += prompt.size(); prompt.clear(); // very basic greedy sampling strategy: // // - always take the most probable token // // more sophisticated sampling strategies could be implemented here, but we keep it simple // feel free to experiment! // { const int n_vocab = whisper_n_vocab(ctx); whisper_token id = 0; whisper_token tid = whisper_token_beg(ctx); id = whisper_sample_best(ctx, result_len == 0); if (i > 0) { tid = whisper_sample_timestamp(ctx); } // update sliding window if (id > whisper_token_beg(ctx)) { seek_delta = 2*(id - whisper_token_beg(ctx)); result_len = i + 1; } last_id = id; // add it to the context prompt.push_back(id); result_cur.push_back({ id, seek + 2*(tid - whisper_token_beg(ctx)) }); //printf("%s: %s\n", __func__, vocab.id_to_token[id].c_str()); // end of text token if (id == whisper_token_eot(ctx)) { break; } } if (done) { break; } } result_cur.resize(result_len); //result_all.insert(result_all.end(), result_cur.begin(), result_cur.end()); for (const auto & r : result_cur) { prompt_past.push_back(r.id); } // print the text from this iteration if (result_cur.size() > 0) { auto t0 = result_cur.front().t; std::string text = ""; for (int i = 0; i < result_cur.size(); i++) { if (params.print_special_tokens == false && result_cur[i].id >= whisper_token_eot(ctx)) { } else { text += whisper_token_to_str(ctx, result_cur[i].id); } if (result_cur[i].id > whisper_token_beg(ctx)) { const auto t1 = result_cur[i].t; if (!text.empty()) { if (params.no_timestamps) { printf ("%s", text.c_str()); fflush(stdout); } else { printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text.c_str()); } } text = ""; while (result_cur[i].id > whisper_token_beg(ctx) && i < result_cur.size()) { i++; } i--; t0 = result_cur[i].t; } } if (!text.empty()) { printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(seek + seek_delta).c_str(), text.c_str()); } } seek += seek_delta; } } whisper_print_timings(ctx); whisper_free(ctx); return 0; }