// Real-time speech recognition of input from a microphone // // A very quick-n-dirty implementation serving mainly as a proof of concept. #include "whisper.h" // third-party utilities // use your favorite implementations #define DR_WAV_IMPLEMENTATION #include "dr_wav.h" #include #include #include #include #include #include #include #include // 500 -> 00:05.000 // 6000 -> 01:00.000 std::string to_timestamp(int64_t t) { int64_t sec = t/100; int64_t msec = t - sec*100; int64_t min = sec/60; sec = sec - min*60; char buf[32]; snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec); return std::string(buf); } // command-line parameters struct whisper_params { int32_t seed = -1; // RNG seed, not used currently int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); int32_t step_ms = 3000; int32_t length_ms = 10000; int32_t capture_id = -1; int32_t max_tokens = 32; int32_t audio_ctx = 0; bool speed_up = false; bool verbose = false; bool translate = false; bool no_context = true; bool print_special_tokens = false; bool no_timestamps = true; std::string language = "en"; std::string model = "models/ggml-base.en.bin"; std::string fname_out = ""; }; void whisper_print_usage(int argc, char ** argv, const whisper_params & params); bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { for (int i = 1; i < argc; i++) { std::string arg = argv[i]; if (arg == "-s" || arg == "--seed") { params.seed = std::stoi(argv[++i]); } else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); } else if (arg == "--step") { params.step_ms = std::stoi(argv[++i]); } else if (arg == "--length") { params.length_ms = std::stoi(argv[++i]); } else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); } else if (arg == "-mt" || arg == "--max_tokens") { params.max_tokens = std::stoi(argv[++i]); } else if (arg == "-ac" || arg == "--audio_ctx") { params.audio_ctx = std::stoi(argv[++i]); } else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; } else if (arg == "-v" || arg == "--verbose") { params.verbose = true; } else if (arg == "--translate") { params.translate = true; } else if (arg == "-kc" || arg == "--keep-context") { params.no_context = false; } else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; if (whisper_lang_id(params.language.c_str()) == -1) { fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str()); whisper_print_usage(argc, argv, params); exit(0); } } else if (arg == "-ps" || arg == "--print_special") { params.print_special_tokens = true; } else if (arg == "-nt" || arg == "--no_timestamps") { params.no_timestamps = true; } else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; } else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; } else if (arg == "-h" || arg == "--help") { whisper_print_usage(argc, argv, params); exit(0); } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); whisper_print_usage(argc, argv, params); exit(0); } } return true; } void whisper_print_usage(int argc, char ** argv, const whisper_params & params) { fprintf(stderr, "\n"); fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " --step N audio step size in milliseconds (default: %d)\n", params.step_ms); fprintf(stderr, " --length N audio length in milliseconds (default: %d)\n", params.length_ms); fprintf(stderr, " -c ID, --capture ID capture device ID (default: -1)\n"); fprintf(stderr, " -mt N, --max_tokens N maximum number of tokens per audio chunk (default: %d)\n", params.max_tokens); fprintf(stderr, " -ac N, --audio_ctx N audio context size (default: %d, 0 - all)\n", params.audio_ctx); fprintf(stderr, " -su, --speed-up speed up audio by factor of 2 (faster processing, reduced accuracy, default: %s)\n", params.speed_up ? "true" : "false"); fprintf(stderr, " -v, --verbose verbose output\n"); fprintf(stderr, " --translate translate from source language to english\n"); fprintf(stderr, " -kc, --keep-context keep text context from earlier audio (default: false)\n"); fprintf(stderr, " -ps, --print_special print special tokens\n"); fprintf(stderr, " -nt, --no_timestamps do not print timestamps\n"); fprintf(stderr, " -l LANG, --language LANG spoken language (default: %s)\n", params.language.c_str()); fprintf(stderr, " -m FNAME, --model FNAME model path (default: %s)\n", params.model.c_str()); fprintf(stderr, " -f FNAME, --file FNAME text output file name (default: no output to file)\n"); fprintf(stderr, "\n"); } // // SDL Audio capture // SDL_AudioDeviceID g_dev_id_in = 0; bool audio_sdl_init(const int capture_id) { if (g_dev_id_in) { fprintf(stderr, "%s: already initialized\n", __func__); return false; } if (g_dev_id_in == 0) { SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO); if (SDL_Init(SDL_INIT_AUDIO) < 0) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError()); return (1); } SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE); { int nDevices = SDL_GetNumAudioDevices(SDL_TRUE); fprintf(stderr, "%s: found %d capture devices:\n", __func__, nDevices); for (int i = 0; i < nDevices; i++) { fprintf(stderr, "%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE)); } } } if (g_dev_id_in == 0) { SDL_AudioSpec capture_spec_requested; SDL_AudioSpec capture_spec_obtained; SDL_zero(capture_spec_requested); SDL_zero(capture_spec_obtained); capture_spec_requested.freq = WHISPER_SAMPLE_RATE; capture_spec_requested.format = AUDIO_F32; capture_spec_requested.channels = 1; capture_spec_requested.samples = 1024; if (capture_id >= 0) { fprintf(stderr, "%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE)); g_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0); } else { fprintf(stderr, "%s: attempt to open default capture device ...\n", __func__); g_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0); } if (!g_dev_id_in) { fprintf(stderr, "%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError()); g_dev_id_in = 0; } else { fprintf(stderr, "%s: obtained spec for input device (SDL Id = %d):\n", __func__, g_dev_id_in); fprintf(stderr, "%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq); fprintf(stderr, "%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format, capture_spec_requested.format); fprintf(stderr, "%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels, capture_spec_requested.channels); fprintf(stderr, "%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples); } } return true; } /////////////////////////// int main(int argc, char ** argv) { whisper_params params; if (whisper_params_parse(argc, argv, params) == false) { return 1; } if (params.seed < 0) { params.seed = time(NULL); } // init audio if (!audio_sdl_init(params.capture_id)) { fprintf(stderr, "%s: audio_sdl_init() failed!\n", __func__); return 1; } // whisper init struct whisper_context * ctx = whisper_init(params.model.c_str()); const int n_samples = (params.step_ms/1000.0)*WHISPER_SAMPLE_RATE; const int n_samples_len = (params.length_ms/1000.0)*WHISPER_SAMPLE_RATE; const int n_samples_30s = 30*WHISPER_SAMPLE_RATE; const int n_samples_keep = 0.2*WHISPER_SAMPLE_RATE; std::vector pcmf32(n_samples_30s, 0.0f); std::vector pcmf32_old; std::vector prompt_tokens; const int n_new_line = params.length_ms / params.step_ms - 1; // print some info about the processing { fprintf(stderr, "\n"); if (!whisper_is_multilingual(ctx)) { if (params.language != "en" || params.translate) { params.language = "en"; params.translate = false; fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__); } } fprintf(stderr, "%s: processing %d samples (step = %.1f sec / len = %.1f sec), %d threads, lang = %s, task = %s, timestamps = %d ...\n", __func__, n_samples, float(n_samples)/WHISPER_SAMPLE_RATE, float(n_samples_len)/WHISPER_SAMPLE_RATE, params.n_threads, params.language.c_str(), params.translate ? "translate" : "transcribe", params.no_timestamps ? 0 : 1); fprintf(stderr, "%s: n_new_line = %d\n", __func__, n_new_line); fprintf(stderr, "\n"); } SDL_PauseAudioDevice(g_dev_id_in, 0); int n_iter = 0; bool is_running = true; std::ofstream fout; if (params.fname_out.length() > 0) { fout.open(params.fname_out); if (!fout.is_open()) { fprintf(stderr, "%s: failed to open output file '%s'!\n", __func__, params.fname_out.c_str()); return 1; } } printf("[Start speaking]"); fflush(stdout); // main audio loop while (is_running) { // process SDL events: SDL_Event event; while (SDL_PollEvent(&event)) { switch (event.type) { case SDL_QUIT: { is_running = false; } break; default: break; } } if (!is_running) { break; } // process new audio if (n_iter > 0 && SDL_GetQueuedAudioSize(g_dev_id_in) > 2*n_samples*sizeof(float)) { fprintf(stderr, "\n\n%s: WARNING: cannot process audio fast enough, dropping audio ...\n\n", __func__); SDL_ClearQueuedAudio(g_dev_id_in); } while (SDL_GetQueuedAudioSize(g_dev_id_in) < n_samples*sizeof(float)) { SDL_Delay(1); } const int n_samples_new = SDL_GetQueuedAudioSize(g_dev_id_in)/sizeof(float); // take one second from previous iteration //const int n_samples_take = std::min((int) pcmf32_old.size(), std::max(0, n_samples_30s/30 - n_samples_new)); // take up to params.length_ms audio from previous iteration const int n_samples_take = std::min((int) pcmf32_old.size(), std::max(0, n_samples_keep + n_samples_len - n_samples_new)); //printf("processing: take = %d, new = %d, old = %d\n", n_samples_take, n_samples_new, (int) pcmf32_old.size()); pcmf32.resize(n_samples_new + n_samples_take); for (int i = 0; i < n_samples_take; i++) { pcmf32[i] = pcmf32_old[pcmf32_old.size() - n_samples_take + i]; } SDL_DequeueAudio(g_dev_id_in, pcmf32.data() + n_samples_take, n_samples_new*sizeof(float)); pcmf32_old = pcmf32; // run the inference { whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY); wparams.print_progress = false; wparams.print_special_tokens = params.print_special_tokens; wparams.print_realtime = false; wparams.print_timestamps = !params.no_timestamps; wparams.translate = params.translate; wparams.no_context = params.no_context; wparams.single_segment = true; wparams.max_tokens = params.max_tokens; wparams.language = params.language.c_str(); wparams.n_threads = params.n_threads; wparams.audio_ctx = params.audio_ctx; wparams.speed_up = params.speed_up; wparams.prompt_tokens = prompt_tokens.data(); wparams.prompt_n_tokens = prompt_tokens.size(); if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) { fprintf(stderr, "%s: failed to process audio\n", argv[0]); return 6; } // print result; { printf("\33[2K\r"); // print long empty line to clear the previous line printf("%s", std::string(100, ' ').c_str()); printf("\33[2K\r"); const int n_segments = whisper_full_n_segments(ctx); for (int i = 0; i < n_segments; ++i) { const char * text = whisper_full_get_segment_text(ctx, i); if (params.no_timestamps) { printf("%s", text); fflush(stdout); if (params.fname_out.length() > 0) { fout << text; } } else { const int64_t t0 = whisper_full_get_segment_t0(ctx, i); const int64_t t1 = whisper_full_get_segment_t1(ctx, i); printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text); if (params.fname_out.length() > 0) { fout << "[" << to_timestamp(t0) << " --> " << to_timestamp(t1) << "] " << text << std::endl; } } } if (params.fname_out.length() > 0) { fout << std::endl; } } ++n_iter; if ((n_iter % n_new_line) == 0) { printf("\n"); // keep part of the audio for next iteration to try to mitigate word boundary issues pcmf32_old = std::vector(pcmf32.end() - n_samples_keep, pcmf32.end()); // Add tokens of the last full length segment as the prompt prompt_tokens.clear(); const int n_segments = whisper_full_n_segments(ctx); for (int i = 0; i < n_segments; ++i) { const int token_count = whisper_full_n_tokens(ctx, i); for (int j = 0; j < token_count; ++j) { prompt_tokens.push_back(whisper_full_get_token_id(ctx, i, j)); } } } } } whisper_print_timings(ctx); whisper_free(ctx); return 0; }